March  2014, 9(1): 97-110. doi: 10.3934/nhm.2014.9.97

Characteristic half space problem for the Broadwell model

1. 

Department of Mathematics, National University of Singapore, Block S17, 10 Lower Kent Ridge Road, 119076, Singapore

Received  July 2013 Revised  August 2013 Published  April 2014

We study an initial boundary value problem for the Broadwell model in half space. The Green's function for the initial boundary value problem is decomposed into two parts: one is the Green's function for the initial value problem, we call it the fundamental solution for the whole space; the other is the convolution of this fundamental solution with full boundary data. A new approach to obtain the full boundary data is established here. Finally, a nonlinear time-asymptotic stability of an equilibrium state is proved.
Citation: Linglong Du. Characteristic half space problem for the Broadwell model. Networks and Heterogeneous Media, 2014, 9 (1) : 97-110. doi: 10.3934/nhm.2014.9.97
References:
[1]

S.-J. Deng, W.-K. Wang and S.-H. Yu, Pointwise convergence to a Maxwellian for a Broadwellw model with a supersonic boundary, Netw. Heterog. Media, 2 (2007), 383-395. doi: 10.3934/nhm.2007.2.383.

[2]

C.-Y. Lan, H.-E. Lin and S.-H. Yu, The Green's functions for the Broadwell model in a half space problem, Netw. Heterog. Media, 1 (2006), 167-183. doi: 10.3934/nhm.2006.1.167.

[3]

C.-Y. Lan, H.-E. Lin and S.-H. Yu, The Green's functions for the Broadwell model with a transonic boundary, J. Hyperbolic Differ. Equ., 5 (2008), 279-294. doi: 10.1142/S0219891608001489.

[4]

T.-P. Liu, Pointwise convergence to shock waves for viscous conservarion laws, Commun. Pure Appl. Math., 50 (1997), 1113-1182. doi: 10.1002/(SICI)1097-0312(199711)50:11<1113::AID-CPA3>3.0.CO;2-D.

[5]

T.-P. Liu and S.-H. Yu, Initial-boundary value problem for one-dimensional wave solutions of the Boltzmann equation, Commun. Pure Appl. Math., 60 (2007), 295-356. doi: 10.1002/cpa.20172.

[6]

T.-P. Liu and S.-H. Yu, On boundary relation for some dissipative systems, Bull. Inst. Math. Acad. Sin. (N.S.), 6 (2011), 245-267.

[7]

Y. Sone, Kinetic Theory and Fluid Dynamics, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser Boston, Inc., Boston, MA, 2002. doi: 10.1007/978-1-4612-0061-1.

show all references

References:
[1]

S.-J. Deng, W.-K. Wang and S.-H. Yu, Pointwise convergence to a Maxwellian for a Broadwellw model with a supersonic boundary, Netw. Heterog. Media, 2 (2007), 383-395. doi: 10.3934/nhm.2007.2.383.

[2]

C.-Y. Lan, H.-E. Lin and S.-H. Yu, The Green's functions for the Broadwell model in a half space problem, Netw. Heterog. Media, 1 (2006), 167-183. doi: 10.3934/nhm.2006.1.167.

[3]

C.-Y. Lan, H.-E. Lin and S.-H. Yu, The Green's functions for the Broadwell model with a transonic boundary, J. Hyperbolic Differ. Equ., 5 (2008), 279-294. doi: 10.1142/S0219891608001489.

[4]

T.-P. Liu, Pointwise convergence to shock waves for viscous conservarion laws, Commun. Pure Appl. Math., 50 (1997), 1113-1182. doi: 10.1002/(SICI)1097-0312(199711)50:11<1113::AID-CPA3>3.0.CO;2-D.

[5]

T.-P. Liu and S.-H. Yu, Initial-boundary value problem for one-dimensional wave solutions of the Boltzmann equation, Commun. Pure Appl. Math., 60 (2007), 295-356. doi: 10.1002/cpa.20172.

[6]

T.-P. Liu and S.-H. Yu, On boundary relation for some dissipative systems, Bull. Inst. Math. Acad. Sin. (N.S.), 6 (2011), 245-267.

[7]

Y. Sone, Kinetic Theory and Fluid Dynamics, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser Boston, Inc., Boston, MA, 2002. doi: 10.1007/978-1-4612-0061-1.

[1]

Chiu-Ya Lan, Huey-Er Lin, Shih-Hsien Yu. The Green's functions for the Broadwell Model in a half space problem. Networks and Heterogeneous Media, 2006, 1 (1) : 167-183. doi: 10.3934/nhm.2006.1.167

[2]

Shijin Deng, Weike Wang, Shih-Hsien Yu. Pointwise convergence to a Maxwellian for a Broadwell model with a supersonic boundary. Networks and Heterogeneous Media, 2007, 2 (3) : 383-395. doi: 10.3934/nhm.2007.2.383

[3]

Jeremiah Birrell. A posteriori error bounds for two point boundary value problems: A green's function approach. Journal of Computational Dynamics, 2015, 2 (2) : 143-164. doi: 10.3934/jcd.2015001

[4]

Peter Bella, Arianna Giunti. Green's function for elliptic systems: Moment bounds. Networks and Heterogeneous Media, 2018, 13 (1) : 155-176. doi: 10.3934/nhm.2018007

[5]

Virginia Agostiniani, Rolando Magnanini. Symmetries in an overdetermined problem for the Green's function. Discrete and Continuous Dynamical Systems - S, 2011, 4 (4) : 791-800. doi: 10.3934/dcdss.2011.4.791

[6]

Sungwon Cho. Alternative proof for the existence of Green's function. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1307-1314. doi: 10.3934/cpaa.2011.10.1307

[7]

Shijin Deng, Linglong Du, Shih-Hsien Yu. Nonlinear stability of Broadwell model with Maxwell diffuse boundary condition. Kinetic and Related Models, 2013, 6 (4) : 865-882. doi: 10.3934/krm.2013.6.865

[8]

Hasib Khan, Cemil Tunc, Aziz Khan. Green function's properties and existence theorems for nonlinear singular-delay-fractional differential equations. Discrete and Continuous Dynamical Systems - S, 2020, 13 (9) : 2475-2487. doi: 10.3934/dcdss.2020139

[9]

Wen-ming He, Jun-zhi Cui. The estimate of the multi-scale homogenization method for Green's function on Sobolev space $W^{1,q}(\Omega)$. Communications on Pure and Applied Analysis, 2012, 11 (2) : 501-516. doi: 10.3934/cpaa.2012.11.501

[10]

Seick Kim, Longjuan Xu. Green's function for second order parabolic equations with singular lower order coefficients. Communications on Pure and Applied Analysis, 2022, 21 (1) : 1-21. doi: 10.3934/cpaa.2021164

[11]

David Hoff. Pointwise bounds for the Green's function for the Neumann-Laplace operator in $ \text{R}^3 $. Kinetic and Related Models, 2022, 15 (4) : 535-550. doi: 10.3934/krm.2021037

[12]

Sebastián Ferrer, Francisco Crespo. Alternative angle-based approach to the $\mathcal{KS}$-Map. An interpretation through symmetry and reduction. Journal of Geometric Mechanics, 2018, 10 (3) : 359-372. doi: 10.3934/jgm.2018013

[13]

Christian Wolf. A shift map with a discontinuous entropy function. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 319-329. doi: 10.3934/dcds.2020012

[14]

Kyoungsun Kim, Gen Nakamura, Mourad Sini. The Green function of the interior transmission problem and its applications. Inverse Problems and Imaging, 2012, 6 (3) : 487-521. doi: 10.3934/ipi.2012.6.487

[15]

Jongkeun Choi, Ki-Ahm Lee. The Green function for the Stokes system with measurable coefficients. Communications on Pure and Applied Analysis, 2017, 16 (6) : 1989-2022. doi: 10.3934/cpaa.2017098

[16]

Wacław Marzantowicz, Justyna Signerska. Firing map of an almost periodic input function. Conference Publications, 2011, 2011 (Special) : 1032-1041. doi: 10.3934/proc.2011.2011.1032

[17]

Ekaterina Gromova, Ekaterina Marova, Dmitry Gromov. A substitute for the classical Neumann–Morgenstern characteristic function in cooperative differential games. Journal of Dynamics and Games, 2020, 7 (2) : 105-122. doi: 10.3934/jdg.2020007

[18]

Zhi-Min Chen. Straightforward approximation of the translating and pulsating free surface Green function. Discrete and Continuous Dynamical Systems - B, 2014, 19 (9) : 2767-2783. doi: 10.3934/dcdsb.2014.19.2767

[19]

Claudia Bucur. Some observations on the Green function for the ball in the fractional Laplace framework. Communications on Pure and Applied Analysis, 2016, 15 (2) : 657-699. doi: 10.3934/cpaa.2016.15.657

[20]

Hsuan-Wen Su. Finding invariant tori with Poincare's map. Communications on Pure and Applied Analysis, 2008, 7 (2) : 433-443. doi: 10.3934/cpaa.2008.7.433

2020 Impact Factor: 1.213

Metrics

  • PDF downloads (62)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]