-
Previous Article
Link prediction in multiplex networks
- NHM Home
- This Issue
-
Next Article
Preface: "New trends, models and applications in complex and multiplex networks"
Transferability of collective transportation line networks from a topological and passenger demand perspective
1. | Interuniversity Research Center on Network Enterprise, Logistics and Transportation (CIRRELT), HEC Montréal, 3000 chemin de la Côte-Sainte-Catherine, Montréal, H3T 2A7, Canada, Canada |
2. | Department of Applied Mathematics II, Higher Technical School of Engineering. University of Seville, Camino de los Descubrimientos s/n, Seville, 41092, Spain, Spain |
References:
[1] |
A. Barabasi and R. Albert, Emergence of scaling in random networks, Science, 286 (1999), 509-512.
doi: 10.1126/science.286.5439.509. |
[2] |
E. Barrena, A. De-Los-Santos, G. Laporte and J. A. Mesa, Passenger flow connectivity in collective transportation line networks, International Journal of Complex Systems in Science, 3 (2013), 1-10. |
[3] |
E. Barrena, A. De-Los-Santos, J. A. Mesa and F. Perea, Analyzing connectivity in collective transportation line networks by means of hypergraphs, European Physical Journal. Special Topics, 215 (2013), 93-108.
doi: 10.1140/epjst/e2013-01717-3. |
[4] |
C. Berge, Graphes et Hypergraphes, Elsevier Science, Paris, 1973. |
[5] |
C. Berge, Hypergraphs: Combinatorics of Finite Sets, North-Holland Mathematical Library, North-Holland, Amsterdam, 1989. Available from: http://books.google.es/books?id=jEyfse-EKf8C. |
[6] |
R. Criado, B. Hernández-Bermejo and M. Romance, Efficiency, vulnerability and cost: An overview with applications to subway networks worldwide, International Journal of Bifurcation and Chaos, 17 (2007), 2289-2301.
doi: 10.1142/S0218127407018397. |
[7] |
A. De-Los-Santos, G. Laporte, J. Mesa and F. Perea, Evaluating passenger robustness in a rail transit network, Transportation Research Part C: Emerging Technologies, 20 (2012), 34-46. |
[8] |
S. Derrible and C. Kennedy, The complexity and robustness of metro networks, Physica A: Statistical Mechanics and its Applications, 389 (2010), 3678-3691.
doi: 10.1016/j.physa.2010.04.008. |
[9] |
G. Laporte, J. Mesa and F. Ortega, Assessing the efficiency of rapid transit configurations, TOP, 5 (1997), 95-104.
doi: 10.1007/BF02568532. |
[10] |
G. Laporte, J. Mesa and F. Ortega, Optimization methods for the planning of rapid transit systems, European Journal of Operational Research, 122 (2000), 1-10.
doi: 10.1016/S0377-2217(99)00016-8. |
[11] |
V. Latora and M. Marchiori, Efficient behavior of small-world networks, Physical Review Letters, 87 (2001), 198701-1-198701-4.
doi: 10.1103/PhysRevLett.87.198701. |
[12] |
V. Latora and M. Marchiori, Is the Boston subway a small-world network?, Physica A, 314 (2002), 109-113.
doi: 10.1016/S0378-4371(02)01089-0. |
[13] |
S. Milgram, The small world problem, Psychology Today, 1 (1967), 60-67.
doi: 10.1037/e400002009-005. |
[14] |
C. Roth, S. Kang, M. Batty and M. Barthelemy, A long-time limit for world subway networks, Journal of The Royal Society Interface, 9 (2012), 2540-2550.
doi: 10.1098/rsif.2012.0259. |
[15] |
K. Seaton and L. Hackett, Stations, trains and small-world networks, Physica A: Statistical Mechanics and its Applications, 339 (2004), 635-644.
doi: 10.1016/j.physa.2004.03.019. |
[16] |
D. Watts and S. Strogatz, Collective dynamics of small-world networks, Nature, 393 (1998), 440-442. |
show all references
References:
[1] |
A. Barabasi and R. Albert, Emergence of scaling in random networks, Science, 286 (1999), 509-512.
doi: 10.1126/science.286.5439.509. |
[2] |
E. Barrena, A. De-Los-Santos, G. Laporte and J. A. Mesa, Passenger flow connectivity in collective transportation line networks, International Journal of Complex Systems in Science, 3 (2013), 1-10. |
[3] |
E. Barrena, A. De-Los-Santos, J. A. Mesa and F. Perea, Analyzing connectivity in collective transportation line networks by means of hypergraphs, European Physical Journal. Special Topics, 215 (2013), 93-108.
doi: 10.1140/epjst/e2013-01717-3. |
[4] |
C. Berge, Graphes et Hypergraphes, Elsevier Science, Paris, 1973. |
[5] |
C. Berge, Hypergraphs: Combinatorics of Finite Sets, North-Holland Mathematical Library, North-Holland, Amsterdam, 1989. Available from: http://books.google.es/books?id=jEyfse-EKf8C. |
[6] |
R. Criado, B. Hernández-Bermejo and M. Romance, Efficiency, vulnerability and cost: An overview with applications to subway networks worldwide, International Journal of Bifurcation and Chaos, 17 (2007), 2289-2301.
doi: 10.1142/S0218127407018397. |
[7] |
A. De-Los-Santos, G. Laporte, J. Mesa and F. Perea, Evaluating passenger robustness in a rail transit network, Transportation Research Part C: Emerging Technologies, 20 (2012), 34-46. |
[8] |
S. Derrible and C. Kennedy, The complexity and robustness of metro networks, Physica A: Statistical Mechanics and its Applications, 389 (2010), 3678-3691.
doi: 10.1016/j.physa.2010.04.008. |
[9] |
G. Laporte, J. Mesa and F. Ortega, Assessing the efficiency of rapid transit configurations, TOP, 5 (1997), 95-104.
doi: 10.1007/BF02568532. |
[10] |
G. Laporte, J. Mesa and F. Ortega, Optimization methods for the planning of rapid transit systems, European Journal of Operational Research, 122 (2000), 1-10.
doi: 10.1016/S0377-2217(99)00016-8. |
[11] |
V. Latora and M. Marchiori, Efficient behavior of small-world networks, Physical Review Letters, 87 (2001), 198701-1-198701-4.
doi: 10.1103/PhysRevLett.87.198701. |
[12] |
V. Latora and M. Marchiori, Is the Boston subway a small-world network?, Physica A, 314 (2002), 109-113.
doi: 10.1016/S0378-4371(02)01089-0. |
[13] |
S. Milgram, The small world problem, Psychology Today, 1 (1967), 60-67.
doi: 10.1037/e400002009-005. |
[14] |
C. Roth, S. Kang, M. Batty and M. Barthelemy, A long-time limit for world subway networks, Journal of The Royal Society Interface, 9 (2012), 2540-2550.
doi: 10.1098/rsif.2012.0259. |
[15] |
K. Seaton and L. Hackett, Stations, trains and small-world networks, Physica A: Statistical Mechanics and its Applications, 339 (2004), 635-644.
doi: 10.1016/j.physa.2004.03.019. |
[16] |
D. Watts and S. Strogatz, Collective dynamics of small-world networks, Nature, 393 (1998), 440-442. |
[1] |
Michael Blank. Emergence of collective behavior in dynamical networks. Discrete and Continuous Dynamical Systems - B, 2013, 18 (2) : 313-329. doi: 10.3934/dcdsb.2013.18.313 |
[2] |
Fabio Camilli, Raul De Maio, Andrea Tosin. Transport of measures on networks. Networks and Heterogeneous Media, 2017, 12 (2) : 191-215. doi: 10.3934/nhm.2017008 |
[3] |
Gershon Wolansky. Limit theorems for optimal mass transportation and applications to networks. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 365-374. doi: 10.3934/dcds.2011.30.365 |
[4] |
Zhen Jin, Guiquan Sun, Huaiping Zhu. Epidemic models for complex networks with demographics. Mathematical Biosciences & Engineering, 2014, 11 (6) : 1295-1317. doi: 10.3934/mbe.2014.11.1295 |
[5] |
Robert Carlson. Spectral theory for nonconservative transmission line networks. Networks and Heterogeneous Media, 2011, 6 (2) : 257-277. doi: 10.3934/nhm.2011.6.257 |
[6] |
Massimiliano Caramia, Giovanni Storchi. Evaluating the effects of parking price and location in multi-modal transportation networks. Networks and Heterogeneous Media, 2006, 1 (3) : 441-465. doi: 10.3934/nhm.2006.1.441 |
[7] |
Mingxing Zhou, Jing Liu, Shuai Wang, Shan He. A comparative study of robustness measures for cancer signaling networks. Big Data & Information Analytics, 2017, 2 (1) : 87-96. doi: 10.3934/bdia.2017011 |
[8] |
Meihong Qiao, Anping Liu, Qing Tang. The dynamics of an HBV epidemic model on complex heterogeneous networks. Discrete and Continuous Dynamical Systems - B, 2015, 20 (5) : 1393-1404. doi: 10.3934/dcdsb.2015.20.1393 |
[9] |
Mahendra Piraveenan, Mikhail Prokopenko, Albert Y. Zomaya. On congruity of nodes and assortative information content in complex networks. Networks and Heterogeneous Media, 2012, 7 (3) : 441-461. doi: 10.3934/nhm.2012.7.441 |
[10] |
F. S. Vannucchi, S. Boccaletti. Chaotic spreading of epidemics in complex networks of excitable units. Mathematical Biosciences & Engineering, 2004, 1 (1) : 49-55. doi: 10.3934/mbe.2004.1.49 |
[11] |
Chol-Ung Choe, Thomas Dahms, Philipp Hövel, Eckehard Schöll. Control of synchrony by delay coupling in complex networks. Conference Publications, 2011, 2011 (Special) : 292-301. doi: 10.3934/proc.2011.2011.292 |
[12] |
Xiwei Liu, Tianping Chen, Wenlian Lu. Cluster synchronization for linearly coupled complex networks. Journal of Industrial and Management Optimization, 2011, 7 (1) : 87-101. doi: 10.3934/jimo.2011.7.87 |
[13] |
Regino Criado, Julio Flores, Alejandro J. García del Amo, Miguel Romance. Structural properties of the line-graphs associated to directed networks. Networks and Heterogeneous Media, 2012, 7 (3) : 373-384. doi: 10.3934/nhm.2012.7.373 |
[14] |
Almerima Jamakovic, Steve Uhlig. On the relationships between topological measures in real-world networks. Networks and Heterogeneous Media, 2008, 3 (2) : 345-359. doi: 10.3934/nhm.2008.3.345 |
[15] |
Giacomo Albi, Lorenzo Pareschi, Mattia Zanella. Opinion dynamics over complex networks: Kinetic modelling and numerical methods. Kinetic and Related Models, 2017, 10 (1) : 1-32. doi: 10.3934/krm.2017001 |
[16] |
Massimiliano Zanin, Ernestina Menasalvas, Pedro A. C. Sousa, Stefano Boccaletti. Preprocessing and analyzing genetic data with complex networks: An application to Obstructive Nephropathy. Networks and Heterogeneous Media, 2012, 7 (3) : 473-481. doi: 10.3934/nhm.2012.7.473 |
[17] |
Jin-Liang Wang, Zhi-Chun Yang, Tingwen Huang, Mingqing Xiao. Local and global exponential synchronization of complex delayed dynamical networks with general topology. Discrete and Continuous Dynamical Systems - B, 2011, 16 (1) : 393-408. doi: 10.3934/dcdsb.2011.16.393 |
[18] |
Regino Criado, Rosa M. Benito, Miguel Romance, Juan C. Losada. Preface: Mesoscales and evolution in complex networks: Applications and related topics. Networks and Heterogeneous Media, 2012, 7 (3) : i-iii. doi: 10.3934/nhm.2012.7.3i |
[19] |
Raoul-Martin Memmesheimer, Marc Timme. Stable and unstable periodic orbits in complex networks of spiking neurons with delays. Discrete and Continuous Dynamical Systems, 2010, 28 (4) : 1555-1588. doi: 10.3934/dcds.2010.28.1555 |
[20] |
Shouying Huang, Jifa Jiang. Epidemic dynamics on complex networks with general infection rate and immune strategies. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2071-2090. doi: 10.3934/dcdsb.2018226 |
2020 Impact Factor: 1.213
Tools
Metrics
Other articles
by authors
[Back to Top]