June  2015, 10(2): 369-385. doi: 10.3934/nhm.2015.10.369

Stability of conductivities in an inverse problem in the reaction-diffusion system in electrocardiology

1. 

Institut de Mathématiques de Bordeaux, UMR CNRS 5251, Université de Bordeaux, 3 ter Place de la Victoire, 33076 Bordeaux cedex, France, France

2. 

School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000

Received  November 2013 Revised  March 2015 Published  April 2015

In this paper, we study the stability result for the conductivities diffusion coefficients to a strongly reaction-diffusion system modeling electrical activity in the heart. To study the problem, we establish a Carleman estimate for our system. The proof is based on the combination of a Carleman estimate and certain weight energy estimates for parabolic systems.
Citation: Bedr'Eddine Ainseba, Mostafa Bendahmane, Yuan He. Stability of conductivities in an inverse problem in the reaction-diffusion system in electrocardiology. Networks and Heterogeneous Media, 2015, 10 (2) : 369-385. doi: 10.3934/nhm.2015.10.369
References:
[1]

M. Bendahmane and F. W. Chaves-Silva, Controllability of a degenerating reaction-diffusion system in electrocardiology,, to appear in SIAM Journal on Control and Optimization, (). 

[2]

M. Bendahmane and K. H. Karlsen, Analysis of a class of degenerate reaction-diffusion systems and the bidomain model of cardiac tissue, Netw. Heterog. Media, 1 (2006), 185-218. doi: 10.3934/nhm.2006.1.185.

[3]

M. Bendahmane and K. H. Karlsen, Convergence of a finite volume scheme for the bidomain model of cardiac tissue, Appl. Numer. Math., 59 (2009), 2266-2284. doi: 10.1016/j.apnum.2008.12.016.

[4]

M. Bendahmane, R. Bürger and R. Ruiz Baier, A finite volume scheme for cardiac propagation in media with isotropic conductivities, Math. Comp. Simul., 80 (2010), 1821-1840. doi: 10.1016/j.matcom.2009.12.010.

[5]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011.

[6]

A. L. Bukhgeĭm, Carleman estimates for Volterra operators and uniqueness of inverse problems, in Non-classical Problems of Mathematical Physics, Computing Center of Siberian Branch of Soviet Academy of Sciences, Novosibirsk, 1981, 56-64.

[7]

A. L. Bukhgeim, Introduction to the Theory of Inverse Problems, VSP, Utrecht, 2000.

[8]

A. L. Bukhgeim and M. V. Klibanov, Uniqueness in the large class of multidimensional inverse problems, (Russian) Dokl. Akad. Nauk SSSR, 260 (1981), 269-272.

[9]

K. C. Chang, Methods in Nonlinear Analysis, Springer-Verlag Berlin Heidelberg, Netherlands, 2005.

[10]

P. Colli Franzone and G. Savaré, Degenerate evolution systems modeling the cardiac electric field at micro- and macroscopic level, in Evolution Equations, Semigroups and Functional Analysis (Milano, 2000), Progr. Nonlinear Differential Equations Appl., 50, Birkhäuser, Basel, 2002, 49-78.

[11]

M. Cristofol, P. Gaitan and H. Ramoul, Inverse problems for a $2 \times 2$ reaction-diffusion system using a Carleman estimate with one observation, Inverse Problems, 22 (2006), 1561-1573. doi: 10.1088/0266-5611/22/5/003.

[12]

A. V. Fursikov and O. Yu. Imanuvilov, Controllability of Evolution Equations, Lecture Notes Series, 34, RIM Seoul National University, Korea, 1996.

[13]

O.Yu. Imanuvilov, M. Yamamoto, Lipschitz stability in inverse problems by Carleman estimates, Inverse Problems, 14 (1998), 1229-1245. doi: 10.1088/0266-5611/14/5/009.

[14]

O. Yu. Imanuvilov and M. Yamamoto, Carleman estimates for the non-stationary Lamé system and the application to an inverse problem, ESAIM, COCV, 11 (2005), 1-56. doi: 10.1051/cocv:2004030.

[15]

V. Isakov, Carleman estimates and applications to inverse problems, Milan J. Math., 72 (2004), 249-271. doi: 10.1007/s00032-004-0033-6.

[16]

M. V. Klibanov, Carleman estimates and inverse problems in the lasrt two decades, in Surveys on Solution Methods for Inverse Problems, Springer, Vienna, 2000, 119-146.

[17]

M. V. Klibanov and M. Yamamoto, Lipschitz stability of an inverse problem for an acoustic equation, Appl. Anal., 85 (2006), 515-538. doi: 10.1080/00036810500474788.

[18]

M. A. Krasnoselskii, Positive Solutions of Operator Equations, Noordhoff, Groningen, 1964.

[19]

G. Lebeau and L. Robbiano, Contrôle exact de l'equation de la chaleur, Comm. Partial Differential Equations, 20 (1995), 335-356. doi: 10.1080/03605309508821097.

[20]

J.-P. Puel and M. Yamamoto, On a global estimate in a linear inverse hyperbolic problem, Inverse Problems, 12 (1996), 995-1002. doi: 10.1088/0266-5611/12/6/013.

[21]

K. Sakthivel, N. Baranibalan, J.-H. Kim and K. Balachandran, Stability of diffusion coefficients in an inverse problem for the Lotka-Volterra competition system, Acta Appl. Math., 111 (2010), 129-147. doi: 10.1007/s10440-009-9455-z.

[22]

Z. Q. Wu, J. X. Yin and C. P. Wang, Elliptic and Parabolic Equations, World Scientific Publishing Co. Pte. Ltd, 2003. doi: 10.1142/6238.

[23]

M. Yamamoto, Uniqueness and stability in multidimensional hyperbolic inverse problems, J. Math. Pures Appl., 78 (1999), 65-98. doi: 10.1016/S0021-7824(99)80010-5.

[24]

G. Yuan and M. Yamamoto, Lipshitz stability in the determination of the principal part of a parabolic equation, ESAIM: Control Optim. Calc. Var., 15 (2009), 525-554. doi: 10.1051/cocv:2008043.

show all references

References:
[1]

M. Bendahmane and F. W. Chaves-Silva, Controllability of a degenerating reaction-diffusion system in electrocardiology,, to appear in SIAM Journal on Control and Optimization, (). 

[2]

M. Bendahmane and K. H. Karlsen, Analysis of a class of degenerate reaction-diffusion systems and the bidomain model of cardiac tissue, Netw. Heterog. Media, 1 (2006), 185-218. doi: 10.3934/nhm.2006.1.185.

[3]

M. Bendahmane and K. H. Karlsen, Convergence of a finite volume scheme for the bidomain model of cardiac tissue, Appl. Numer. Math., 59 (2009), 2266-2284. doi: 10.1016/j.apnum.2008.12.016.

[4]

M. Bendahmane, R. Bürger and R. Ruiz Baier, A finite volume scheme for cardiac propagation in media with isotropic conductivities, Math. Comp. Simul., 80 (2010), 1821-1840. doi: 10.1016/j.matcom.2009.12.010.

[5]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011.

[6]

A. L. Bukhgeĭm, Carleman estimates for Volterra operators and uniqueness of inverse problems, in Non-classical Problems of Mathematical Physics, Computing Center of Siberian Branch of Soviet Academy of Sciences, Novosibirsk, 1981, 56-64.

[7]

A. L. Bukhgeim, Introduction to the Theory of Inverse Problems, VSP, Utrecht, 2000.

[8]

A. L. Bukhgeim and M. V. Klibanov, Uniqueness in the large class of multidimensional inverse problems, (Russian) Dokl. Akad. Nauk SSSR, 260 (1981), 269-272.

[9]

K. C. Chang, Methods in Nonlinear Analysis, Springer-Verlag Berlin Heidelberg, Netherlands, 2005.

[10]

P. Colli Franzone and G. Savaré, Degenerate evolution systems modeling the cardiac electric field at micro- and macroscopic level, in Evolution Equations, Semigroups and Functional Analysis (Milano, 2000), Progr. Nonlinear Differential Equations Appl., 50, Birkhäuser, Basel, 2002, 49-78.

[11]

M. Cristofol, P. Gaitan and H. Ramoul, Inverse problems for a $2 \times 2$ reaction-diffusion system using a Carleman estimate with one observation, Inverse Problems, 22 (2006), 1561-1573. doi: 10.1088/0266-5611/22/5/003.

[12]

A. V. Fursikov and O. Yu. Imanuvilov, Controllability of Evolution Equations, Lecture Notes Series, 34, RIM Seoul National University, Korea, 1996.

[13]

O.Yu. Imanuvilov, M. Yamamoto, Lipschitz stability in inverse problems by Carleman estimates, Inverse Problems, 14 (1998), 1229-1245. doi: 10.1088/0266-5611/14/5/009.

[14]

O. Yu. Imanuvilov and M. Yamamoto, Carleman estimates for the non-stationary Lamé system and the application to an inverse problem, ESAIM, COCV, 11 (2005), 1-56. doi: 10.1051/cocv:2004030.

[15]

V. Isakov, Carleman estimates and applications to inverse problems, Milan J. Math., 72 (2004), 249-271. doi: 10.1007/s00032-004-0033-6.

[16]

M. V. Klibanov, Carleman estimates and inverse problems in the lasrt two decades, in Surveys on Solution Methods for Inverse Problems, Springer, Vienna, 2000, 119-146.

[17]

M. V. Klibanov and M. Yamamoto, Lipschitz stability of an inverse problem for an acoustic equation, Appl. Anal., 85 (2006), 515-538. doi: 10.1080/00036810500474788.

[18]

M. A. Krasnoselskii, Positive Solutions of Operator Equations, Noordhoff, Groningen, 1964.

[19]

G. Lebeau and L. Robbiano, Contrôle exact de l'equation de la chaleur, Comm. Partial Differential Equations, 20 (1995), 335-356. doi: 10.1080/03605309508821097.

[20]

J.-P. Puel and M. Yamamoto, On a global estimate in a linear inverse hyperbolic problem, Inverse Problems, 12 (1996), 995-1002. doi: 10.1088/0266-5611/12/6/013.

[21]

K. Sakthivel, N. Baranibalan, J.-H. Kim and K. Balachandran, Stability of diffusion coefficients in an inverse problem for the Lotka-Volterra competition system, Acta Appl. Math., 111 (2010), 129-147. doi: 10.1007/s10440-009-9455-z.

[22]

Z. Q. Wu, J. X. Yin and C. P. Wang, Elliptic and Parabolic Equations, World Scientific Publishing Co. Pte. Ltd, 2003. doi: 10.1142/6238.

[23]

M. Yamamoto, Uniqueness and stability in multidimensional hyperbolic inverse problems, J. Math. Pures Appl., 78 (1999), 65-98. doi: 10.1016/S0021-7824(99)80010-5.

[24]

G. Yuan and M. Yamamoto, Lipshitz stability in the determination of the principal part of a parabolic equation, ESAIM: Control Optim. Calc. Var., 15 (2009), 525-554. doi: 10.1051/cocv:2008043.

[1]

Hongwei Chen. Blow-up estimates of positive solutions of a reaction-diffusion system. Conference Publications, 2003, 2003 (Special) : 182-188. doi: 10.3934/proc.2003.2003.182

[2]

Xinchi Huang, Masahiro Yamamoto. Carleman estimates for a magnetohydrodynamics system and application to inverse source problems. Mathematical Control and Related Fields, 2022  doi: 10.3934/mcrf.2022005

[3]

José-Francisco Rodrigues, João Lita da Silva. On a unilateral reaction-diffusion system and a nonlocal evolution obstacle problem. Communications on Pure and Applied Analysis, 2004, 3 (1) : 85-95. doi: 10.3934/cpaa.2004.3.85

[4]

Mostafa Bendahmane, Kenneth H. Karlsen. Analysis of a class of degenerate reaction-diffusion systems and the bidomain model of cardiac tissue. Networks and Heterogeneous Media, 2006, 1 (1) : 185-218. doi: 10.3934/nhm.2006.1.185

[5]

Sheng-Chen Fu, Je-Chiang Tsai. Stability of travelling waves of a reaction-diffusion system for the acidic nitrate-ferroin reaction. Discrete and Continuous Dynamical Systems, 2013, 33 (9) : 4041-4069. doi: 10.3934/dcds.2013.33.4041

[6]

Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control and Related Fields, 2022, 12 (1) : 147-168. doi: 10.3934/mcrf.2021005

[7]

Xinchi Huang, Atsushi Kawamoto. Inverse problems for a half-order time-fractional diffusion equation in arbitrary dimension by Carleman estimates. Inverse Problems and Imaging, 2022, 16 (1) : 39-67. doi: 10.3934/ipi.2021040

[8]

Michele Di Cristo. Stability estimates in the inverse transmission scattering problem. Inverse Problems and Imaging, 2009, 3 (4) : 551-565. doi: 10.3934/ipi.2009.3.551

[9]

Yuriy Golovaty, Anna Marciniak-Czochra, Mariya Ptashnyk. Stability of nonconstant stationary solutions in a reaction-diffusion equation coupled to the system of ordinary differential equations. Communications on Pure and Applied Analysis, 2012, 11 (1) : 229-241. doi: 10.3934/cpaa.2012.11.229

[10]

Thomas I. Seidman. Interface conditions for a singular reaction-diffusion system. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 631-643. doi: 10.3934/dcdss.2009.2.631

[11]

Yansu Ji, Jianwei Shen, Xiaochen Mao. Pattern formation of Brusselator in the reaction-diffusion system. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022103

[12]

Takashi Kajiwara. A Heteroclinic Solution to a Variational Problem Corresponding to FitzHugh-Nagumo type Reaction-Diffusion System with Heterogeneity. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2133-2156. doi: 10.3934/cpaa.2017106

[13]

Aníbal Rodríguez-Bernal, Silvia Sastre-Gómez. Nonlinear nonlocal reaction-diffusion problem with local reaction. Discrete and Continuous Dynamical Systems, 2022, 42 (4) : 1731-1765. doi: 10.3934/dcds.2021170

[14]

Jifa Jiang, Junping Shi. Dynamics of a reaction-diffusion system of autocatalytic chemical reaction. Discrete and Continuous Dynamical Systems, 2008, 21 (1) : 245-258. doi: 10.3934/dcds.2008.21.245

[15]

Vladimir V. Chepyzhov, Mark I. Vishik. Trajectory attractor for reaction-diffusion system with diffusion coefficient vanishing in time. Discrete and Continuous Dynamical Systems, 2010, 27 (4) : 1493-1509. doi: 10.3934/dcds.2010.27.1493

[16]

Ming Mei. Stability of traveling wavefronts for time-delayed reaction-diffusion equations. Conference Publications, 2009, 2009 (Special) : 526-535. doi: 10.3934/proc.2009.2009.526

[17]

Tomás Caraballo, José A. Langa, James C. Robinson. Stability and random attractors for a reaction-diffusion equation with multiplicative noise. Discrete and Continuous Dynamical Systems, 2000, 6 (4) : 875-892. doi: 10.3934/dcds.2000.6.875

[18]

Cheng-Hsiung Hsu, Jian-Jhong Lin. Stability analysis of traveling wave solutions for lattice reaction-diffusion equations. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1757-1774. doi: 10.3934/dcdsb.2020001

[19]

Xiaojie Hou, Wei Feng. Traveling waves and their stability in a coupled reaction diffusion system. Communications on Pure and Applied Analysis, 2011, 10 (1) : 141-160. doi: 10.3934/cpaa.2011.10.141

[20]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033

2020 Impact Factor: 1.213

Metrics

  • PDF downloads (46)
  • HTML views (0)
  • Cited by (2)

[Back to Top]