American Institute of Mathematical Sciences

March  2015, 10(1): 53-70. doi: 10.3934/nhm.2015.10.53

A simple and bounded model of population dynamics for mutualistic networks

 1 Complex System Group, Technical University of Madrid, Av. Puerta Hierro 4, 28040-Madrid 2 Área de Biodiversidad y Conservación, Dept. Biología y Geología, Universidad Rey Juan Carlos, 28933 Móstoles, Spain 3 Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB), 07122 Palma de Mallorca

Received  July 2014 Revised  November 2014 Published  February 2015

Dynamic population models are based on the Verhulst's equation (logisitic equation), where the classic Malthusian growth rate is damped by intraspecific competition terms. Mainstream population models for mutualism are modifications of the logistic equation with additional terms to account for the benefits produced by the interspecies interactions. These models have shortcomings as the population divergence under some conditions (May's equations) or a mathematical complexity that difficults their analytical treatment (Wright's type II models). In this work, we introduce a model for the population dynamics in mutualism inspired by the logistic equation but cured of divergences. The model is also mathematically more simple than the type II. We use numerical simulations to study the model stability in more general interaction scenarios. Despite its simplicity, our results suggest that the model dynamics are rich and may be used to gain further insights in the dynamics of mutualistic interactions.
Citation: Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks and Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53
References:
 [1] D. Balcan, V. Colizza, B. Gonçalves, H. Hu, J. J. Ramasco and A. Vespignani, Multiscale mobility networks and the spatial spreading of infectious diseases, Proceedings of the National Academy of Sciences USA, 106 (2009), 21484-21489. doi: 10.1073/pnas.0906910106. [2] J. Bascompte and P. Jordano, Plant-animal mutualistic networks: The architecture of biodiversity, The Annual Review of Ecology, Evolution, and Systematics, 38 (2007), 567-593. doi: 10.1146/annurev.ecolsys.38.091206.095818. [3] U. Bastolla, M. A. Fortuna, A. Pascual-García, A. Ferrera, B. Luque and J. Bascompte, The architecture of mutualistic networks minimizes competition and increases biodiversity, Nature, 458 (2009), 1018-1020. doi: 10.1038/nature07950. [4] U. Bastolla, M. Lässig, S. C. Manrubia and A. Valleriani, Biodiversity in model ecosystems, II: Species assembly and food web structure, Journal of Theoretical Biology, 235 (2005), 531-539. doi: 10.1016/j.jtbi.2005.02.006. [5] W. Feller, On the logistic law of growth and its empirical verifications in biology, Acta Biotheoretica, 5 (1940), 51-66. doi: 10.1007/BF01602862. [6] J. P. Gabriel, F. Saucy and L. F. Bersier, Paradoxes in the logistic equation?, Ecological Modelling, 185 (2005), 147-151. doi: 10.1016/j.ecolmodel.2004.10.009. [7] J. R. Groff, Exploring dynamical systems and chaos using the logistic map model of population change, American Journal of Physics, 81 (2013), 725-732. doi: 10.1119/1.4813114. [8] L. Gustafsson and M. Sternad, Bringing consistency to simulation of population models-Poisson simulation as a bridge between micro and macro simulation, Mathematical Biosciences, 209 (2007), 361-385. doi: 10.1016/j.mbs.2007.02.004. [9] C. A. Johnson and P. Amarasekare, Competitionfor benefits can promote the persistence of mutualistics interactions, Journal of Theoretical Biology, 328 (2013), 54-64. doi: 10.1016/j.jtbi.2013.03.016. [10] E. Kuno, Some strange properties of the logistic equation defined with r and k: Inherent defects or artifacts?, Researches on population ecology, 14 (1991), 33-39. [11] T. R. Malthus, An Essay on the Principle of Population or a View of Its Past and Present Effects on Human Happiness; with an Inquiry into Our Prospects Respecting the Future Removal on Mitigation of the Evils which It Occasions, 1st edition, Roger Chew Weightman, Washington, 1798. Available from: http://opac.newsbank.com/select/shaw/17975. [12] R. May, Models for two interacting populations, in Theoretical Ecology. Principles and Applications, $2^{nd}$ edition (ed. R. May), 1981, 78-104. [13] J. D. Murray, Mathematical Biology I: An Introduction, $3^{rd}$ edition, Springer-Verlag, New York, 2002. [14] R. Pearl, The biology of population growth, Zeitschrift für Induktive Abstammungs- und Vererbungslehre, 49 (1929), 336-338. doi: 10.1007/BF01847581. [15] E. Stokstad, Will malthus continue to be wrong?, Science, 309 (2005), p102. doi: 10.1126/science.309.5731.102. [16] P. F. Verhulst, Recherches mathematiques sur la loi d'accroissement de la population [Mathematical researches into the law of population growth increase], Nouveaux Memoires de l'Academie Royale des Sciences et Belles-Lettres de Bruxelles, 18 (1845), 1-42. [17] V. Volterra, Fluctuations in the abundance of a species considered mathematically, Nature, 118 (1926), 558-560. doi: 10.1038/118558a0. [18] D. H. Wright, A simple, stable model of mutualism incorporating handling time, The American Naturalist, 134 (1989), 664-667. doi: 10.1086/285003.

show all references

References:
 [1] D. Balcan, V. Colizza, B. Gonçalves, H. Hu, J. J. Ramasco and A. Vespignani, Multiscale mobility networks and the spatial spreading of infectious diseases, Proceedings of the National Academy of Sciences USA, 106 (2009), 21484-21489. doi: 10.1073/pnas.0906910106. [2] J. Bascompte and P. Jordano, Plant-animal mutualistic networks: The architecture of biodiversity, The Annual Review of Ecology, Evolution, and Systematics, 38 (2007), 567-593. doi: 10.1146/annurev.ecolsys.38.091206.095818. [3] U. Bastolla, M. A. Fortuna, A. Pascual-García, A. Ferrera, B. Luque and J. Bascompte, The architecture of mutualistic networks minimizes competition and increases biodiversity, Nature, 458 (2009), 1018-1020. doi: 10.1038/nature07950. [4] U. Bastolla, M. Lässig, S. C. Manrubia and A. Valleriani, Biodiversity in model ecosystems, II: Species assembly and food web structure, Journal of Theoretical Biology, 235 (2005), 531-539. doi: 10.1016/j.jtbi.2005.02.006. [5] W. Feller, On the logistic law of growth and its empirical verifications in biology, Acta Biotheoretica, 5 (1940), 51-66. doi: 10.1007/BF01602862. [6] J. P. Gabriel, F. Saucy and L. F. Bersier, Paradoxes in the logistic equation?, Ecological Modelling, 185 (2005), 147-151. doi: 10.1016/j.ecolmodel.2004.10.009. [7] J. R. Groff, Exploring dynamical systems and chaos using the logistic map model of population change, American Journal of Physics, 81 (2013), 725-732. doi: 10.1119/1.4813114. [8] L. Gustafsson and M. Sternad, Bringing consistency to simulation of population models-Poisson simulation as a bridge between micro and macro simulation, Mathematical Biosciences, 209 (2007), 361-385. doi: 10.1016/j.mbs.2007.02.004. [9] C. A. Johnson and P. Amarasekare, Competitionfor benefits can promote the persistence of mutualistics interactions, Journal of Theoretical Biology, 328 (2013), 54-64. doi: 10.1016/j.jtbi.2013.03.016. [10] E. Kuno, Some strange properties of the logistic equation defined with r and k: Inherent defects or artifacts?, Researches on population ecology, 14 (1991), 33-39. [11] T. R. Malthus, An Essay on the Principle of Population or a View of Its Past and Present Effects on Human Happiness; with an Inquiry into Our Prospects Respecting the Future Removal on Mitigation of the Evils which It Occasions, 1st edition, Roger Chew Weightman, Washington, 1798. Available from: http://opac.newsbank.com/select/shaw/17975. [12] R. May, Models for two interacting populations, in Theoretical Ecology. Principles and Applications, $2^{nd}$ edition (ed. R. May), 1981, 78-104. [13] J. D. Murray, Mathematical Biology I: An Introduction, $3^{rd}$ edition, Springer-Verlag, New York, 2002. [14] R. Pearl, The biology of population growth, Zeitschrift für Induktive Abstammungs- und Vererbungslehre, 49 (1929), 336-338. doi: 10.1007/BF01847581. [15] E. Stokstad, Will malthus continue to be wrong?, Science, 309 (2005), p102. doi: 10.1126/science.309.5731.102. [16] P. F. Verhulst, Recherches mathematiques sur la loi d'accroissement de la population [Mathematical researches into the law of population growth increase], Nouveaux Memoires de l'Academie Royale des Sciences et Belles-Lettres de Bruxelles, 18 (1845), 1-42. [17] V. Volterra, Fluctuations in the abundance of a species considered mathematically, Nature, 118 (1926), 558-560. doi: 10.1038/118558a0. [18] D. H. Wright, A simple, stable model of mutualism incorporating handling time, The American Naturalist, 134 (1989), 664-667. doi: 10.1086/285003.
 [1] Hanwu Liu, Lin Wang, Fengqin Zhang, Qiuying Li, Huakun Zhou. Dynamics of a predator-prey model with state-dependent carrying capacity. Discrete and Continuous Dynamical Systems - B, 2019, 24 (9) : 4739-4753. doi: 10.3934/dcdsb.2019028 [2] Jian Zu, Wendi Wang, Bo Zu. Evolutionary dynamics of prey-predator systems with Holling type II functional response. Mathematical Biosciences & Engineering, 2007, 4 (2) : 221-237. doi: 10.3934/mbe.2007.4.221 [3] Henri Berestycki, Luca Rossi. Reaction-diffusion equations for population dynamics with forced speed II - cylindrical-type domains. Discrete and Continuous Dynamical Systems, 2009, 25 (1) : 19-61. doi: 10.3934/dcds.2009.25.19 [4] J. X. Velasco-Hernández, M. Núñez-López, G. Ramírez-Santiago, M. Hernández-Rosales. On carrying-capacity construction, metapopulations and density-dependent mortality. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 1099-1110. doi: 10.3934/dcdsb.2017054 [5] Proscovia Namayanja. Chaotic dynamics in a transport equation on a network. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 3415-3426. doi: 10.3934/dcdsb.2018283 [6] Shanshan Chen, Junping Shi, Junjie Wei. The effect of delay on a diffusive predator-prey system with Holling Type-II predator functional response. Communications on Pure and Applied Analysis, 2013, 12 (1) : 481-501. doi: 10.3934/cpaa.2013.12.481 [7] Qiumei Zhang, Daqing Jiang, Li Zu. The stability of a perturbed eco-epidemiological model with Holling type II functional response by white noise. Discrete and Continuous Dynamical Systems - B, 2015, 20 (1) : 295-321. doi: 10.3934/dcdsb.2015.20.295 [8] Yi-Ming Tai, Zhengyang Zhang. Relaxation oscillations in a spruce-budworm interaction model with Holling's type II functional response. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 2173-2199. doi: 10.3934/dcdsb.2021027 [9] Shuping Li, Weinian Zhang. Bifurcations of a discrete prey-predator model with Holling type II functional response. Discrete and Continuous Dynamical Systems - B, 2010, 14 (1) : 159-176. doi: 10.3934/dcdsb.2010.14.159 [10] Kunquan Lan, Wei Lin. Lyapunov type inequalities for Hammerstein integral equations and applications to population dynamics. Discrete and Continuous Dynamical Systems - B, 2019, 24 (4) : 1943-1960. doi: 10.3934/dcdsb.2018256 [11] Yanan Wang, Tao Xie, Xiaowen Jie. A mathematical analysis for the forecast research on tourism carrying capacity to promote the effective and sustainable development of tourism. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 837-847. doi: 10.3934/dcdss.2019056 [12] Jun Zhou, Chan-Gyun Kim, Junping Shi. Positive steady state solutions of a diffusive Leslie-Gower predator-prey model with Holling type II functional response and cross-diffusion. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3875-3899. doi: 10.3934/dcds.2014.34.3875 [13] Kazuhiro Oeda. Positive steady states for a prey-predator cross-diffusion system with a protection zone and Holling type II functional response. Conference Publications, 2013, 2013 (special) : 597-603. doi: 10.3934/proc.2013.2013.597 [14] Zengji Du, Xiao Chen, Zhaosheng Feng. Multiple positive periodic solutions to a predator-prey model with Leslie-Gower Holling-type II functional response and harvesting terms. Discrete and Continuous Dynamical Systems - S, 2014, 7 (6) : 1203-1214. doi: 10.3934/dcdss.2014.7.1203 [15] Adriano Festa, Simone Göttlich, Marion Pfirsching. A model for a network of conveyor belts with discontinuous speed and capacity. Networks and Heterogeneous Media, 2019, 14 (2) : 389-410. doi: 10.3934/nhm.2019016 [16] Quentin De Mourgues. A combinatorial approach to Rauzy-type dynamics II: The labelling method and a second proof of the KZB classification theorem. Discrete and Continuous Dynamical Systems, 2022, 42 (7) : 3465-3538. doi: 10.3934/dcds.2022022 [17] Isabel Coelho, Carlota Rebelo, Elisa Sovrano. Extinction or coexistence in periodic Kolmogorov systems of competitive type. Discrete and Continuous Dynamical Systems, 2021, 41 (12) : 5743-5764. doi: 10.3934/dcds.2021094 [18] Miljana JovanoviĆ, Marija KrstiĆ. Extinction in stochastic predator-prey population model with Allee effect on prey. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2651-2667. doi: 10.3934/dcdsb.2017129 [19] Keng Deng, Yixiang Wu. Extinction and uniform strong persistence of a size-structured population model. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 831-840. doi: 10.3934/dcdsb.2017041 [20] Kaifa Wang, Yang Kuang. Fluctuation and extinction dynamics in host-microparasite systems. Communications on Pure and Applied Analysis, 2011, 10 (5) : 1537-1548. doi: 10.3934/cpaa.2011.10.1537

2021 Impact Factor: 1.41