Advanced Search
Article Contents
Article Contents

Keep right or left? Towards a cognitive-mathematical model for pedestrians

Abstract Related Papers Cited by
  • In this paper we discuss the necessity of insight in the cognitive processes involved in environment navigation into mathematical models for pedestrian motion. We first provide a review of psychological literature on the cognitive processes involved in walking and on the quantitative one coming from applied mathematics, physics, and engineering. Then, we present a critical analysis of the experimental setting for model testing and we show experimental results given by observation. Finally we propose a cognitive model making use of psychological insight as well as optimization models from robotics.
    Mathematics Subject Classification: 91E30, 49J15.


    \begin{equation} \\ \end{equation}
  • [1]

    G. Arechavaleta, J.-P. Laumond, H. Hicheur and A. Berthoz, An optimality principle governing human walking, Robotics, IEEE Transactions on, 24 (2008), 5-14.doi: 10.1109/TRO.2008.915449.


    N. Bellomo and C. Dogbe, On the modeling of traffic and crowds: A survey of models, speculations, and perspectives, SIAM Review, 53 (2011), 409-463.doi: 10.1137/090746677.


    E. M. Cepolina and N. Tyler, Understanding Capacity Drop for designing pedestrian environments, in Proceedings of the 6th International Walk21 Conference, Zurich, 2005, 1-11.


    Y. Chitour, F. Jean and P. Mason, Optimal control models of goal-oriented human locomotion, SIAM Journal on Control and Optimization, 50 (2012), 147-170.doi: 10.1137/100799344.


    F. Chittaro, F. Jean and P. Mason, On inverse optimal control problems of human locomotion: Stability and robustness of the minimizers, Journal of Mathematical Sciences, 195 (2013), 269-287.doi: 10.1007/s10958-013-1579-z.


    R. Conroy-Dalton, The secret is to follow your nose: Route path selection and angularity, in 3rd International Space Syntax Symposium, Atlanta, 2003, 1-47.


    E. Cristiani, B. Piccoli and A. Tosin, Multiscale Modeling of Pedestrian Dynamics, MS&A: Modeling, Simulation and Applications, 12, Springer-Verlag, 2014.doi: 10.1007/978-3-319-06620-2.


    W. Daamen and S. Hoogendoorn, Experimental research of pedestrian walking behavior, Transportation Research Record: Journal of the Transportation Research Board, 1828 (2003), 20-30.doi: 10.3141/1828-03.


    J. M. Dabbs Jr and N. A. Stokes III, Beauty is power: The use of space on the sidewalk, Sociometry, 551-557.


    E. GoffmanRelations in Public: Microstudies of the Social Order, 1971.


    R. G. Golledge, Human wayfinding and cognitive maps, in Wayfinding Behavior: Cognitive Mapping and Other Spatial Processes, JHU Press, 1999, 5-45.


    H. L. Golson and J. M. Dabbs, et al., Line-following tendencies among pedestrians: A sex difference, Personality And Social Psychology Bulletin, 1 (1974), 16-18.doi: 10.1177/014616727400100106.


    D. Helbing, Boltzmann-like and boltzmann-fokker-planck equations as a foundation of behavioral models, Physica A: Statistical Mechanics and its Applications, 196 (1993), 546-573.doi: 10.1016/0378-4371(93)90034-2.


    D. Helbing, L. Buzna, A. Johansson and T. Werner, Self-organized pedestrian crowd dynamics: Experiments, simulations, and design solutions, Transportation Science, 39 (2005), 1-24.doi: 10.1287/trsc.1040.0108.


    D. Helbing and P. Molnar, Social force model for pedestrian dynamics, Physical Review E, 51 (1995), 4282.doi: 10.1103/PhysRevE.51.4282.


    D. Helbing, P. Molnar, I. J. Farkas and K. Bolay, Self-organizing pedestrian movement, Environment and Planning B, 28 (2001), 361-383.doi: 10.1068/b2697.


    S. P. Hoogendoorn and P. H. Bovy, State-of-the-art of vehicular traffic flow modelling, Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 215 (2001), 283-303.


    T. Ishikawa, H. Fujiwara, O. Imai and A. Okabe, Wayfinding with a gps-based mobile navigation system: A comparison with maps and direct experience, Journal of Environmental Psychology, 28 (2008), 74-82.doi: 10.1016/j.jenvp.2007.09.002.


    T. Ishikawa and D. R. Montello, Spatial knowledge acquisition from direct experience in the environment: Individual differences in the development of metric knowledge and the integration of separately learned places, Cognitive Psychology, 52 (2006), 93-129.doi: 10.1016/j.cogpsych.2005.08.003.


    A. Johansson, D. Helbing and P. K. Shukla, Specification of the social force pedestrian model by evolutionary adjustment to video tracking data, Advances in Complex Systems, 10 (2007), 271-288.doi: 10.1142/S0219525907001355.


    H. S. Jung and H.-S. Jung, Survey of korean pedestrians' natural preference for walking directions, Applied Ergonomics, 44 (2013), 1015-1023.doi: 10.1016/j.apergo.2013.04.003.


    A. Lachapelle and M.-T. Wolfram, On a mean field game approach modeling congestion and aversion in pedestrian crowds, Transportation Research Part B: Methodological, 45 (2011), 1572-1589.doi: 10.1016/j.trb.2011.07.011.


    R. Lloyd and C. Heivly, Systematic distortions in urban cognitive maps, Annals of the Association of American Geographers, 77 (1987), 191-207.doi: 10.1111/j.1467-8306.1987.tb00153.x.


    K. Mombaur, J.-P. Laumond and E. Yoshida, An optimal control-based formulation to determine natural locomotor paths for humanoid robots, Advanced Robotics, 24 (2010), 515-535.doi: 10.1163/016918610X487090.


    K. Mombaur, A. Truong and J.-P. Laumond, From human to humanoid locomotion-an inverse optimal control approach, Autonomous Robots, 28 (2010), 369-383.doi: 10.1007/s10514-009-9170-7.


    D. R. Montello, The perception and cognition of environmental distance: Direct sources of information, in Spatial Information Theory A Theoretical Basis for GIS, Springer, 1329 (1997), 297-311.doi: 10.1007/3-540-63623-4_57.


    M. Moussaīd, D. Helbing and G. Theraulaz, How simple rules determine pedestrian behavior and crowd disasters, Proceedings of the National Academy of Sciences, 108 (2011), 6884-6888.


    J. Ondřej, J. Pettré, A.-H. Olivier and S. Donikian, A synthetic-vision based steering approach for crowd simulation, in ACM Transactions on Graphics (TOG), ACM, 29 (2010), p123.


    E. Papadimitriou, G. Yannis and J. Golias, A critical assessment of pedestrian behaviour models, Transportation Research Part F: Traffic Psychology and Behaviour, 12 (2009), 242-255.doi: 10.1016/j.trf.2008.12.004.


    T. Rosenbloom, Crossing at a red light: Behaviour of individuals and groups, Transportation Research Part F: Traffic Psychology and Behaviour, 12 (2009), 389-394.doi: 10.1016/j.trf.2009.05.002.


    J. van den Berg, S. Patil, J. Sewall, D. Manocha and M. Lin, Interactive navigation of multiple agents in crowded environments, in Proceedings of the 2008 symposium on Interactive 3D graphics and games, ACM, 2008, 139-147.


    D. Vickers, P. Bovet, M. D. Lee and P. Hughes, The perception of minimal structures: Performance on open and closed versions of visually presented euclidean travelling salesperson problems, Perception-London, 32 (2003), 871-886.doi: 10.1068/p3416.


    M. Wolff, Notes on the behaviour of pedestrians, People in Places: The Sociology of the Familiar, Praeger, New York, 1973, 35-48.


    L. Yang, J. Li and S. Liu, Simulation of pedestrian counter-flow with right-moving preference, Physica A: Statistical Mechanics and its Applications, 387 (2008), 3281-3289.doi: 10.1016/j.physa.2008.01.107.


    F. Zanlungo, T. Ikeda and T. Kanda, A microscopic "social norm" model to obtain realistic macroscopic velocity and density pedestrian distributions, PloS one, 7 (2012), e50720.doi: 10.1371/journal.pone.0050720.

  • 加载中

Article Metrics

HTML views() PDF downloads(172) Cited by(0)

Access History



    DownLoad:  Full-Size Img  PowerPoint