• Previous Article
    (Almost) Everything you always wanted to know about deterministic control problems in stratified domains
  • NHM Home
  • This Issue
  • Next Article
    Analysis of a system of nonlocal conservation laws for multi-commodity flow on networks
December  2015, 10(4): 787-807. doi: 10.3934/nhm.2015.10.787

Practical synchronization of generalized Kuramoto systems with an intrinsic dynamics

1. 

Department of Mathematical Sciences and Research Institute of Mathematics, Seoul National University, Seoul 151-747

2. 

Department of Mathematics, Myongji University, Yong-In, 449-728, South Korea

3. 

Department of Mathematical Sciences, Seoul National University, Seoul, 151-747

Received  September 2014 Revised  June 2015 Published  October 2015

We study the practical synchronization of the Kuramoto dynamics of units distributed over networks. The unit dynamics on the nodes of the network are governed by the interplay between their own intrinsic dynamics and Kuramoto coupling dynamics. We present two sufficient conditions for practical synchronization under homogeneous and heterogeneous forcing. For practical synchronization estimates, we employ the configuration diameter as a Lyapunov functional, and derive a Gronwall-type differential inequality for this value.
Citation: Seung-Yeal Ha, Se Eun Noh, Jinyeong Park. Practical synchronization of generalized Kuramoto systems with an intrinsic dynamics. Networks and Heterogeneous Media, 2015, 10 (4) : 787-807. doi: 10.3934/nhm.2015.10.787
References:
[1]

J. A. Acebron, L. L. Bonilla, C. J. P. Pérez Vicente, F. Ritort and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys., 77 (2005), 137-185. doi: 10.1103/RevModPhys.77.137.

[2]

T. M. Antonsen, R. T. Faghih, M. Girvan, E. Ott and J. Platig, External periodic driving of large systems of globally coupled phase oscillators, Chaos, 18 (2008), 037112, 10pp. doi: 10.1063/1.2952447.

[3]

R. Bhatia, Matrix Analysis, Graduate Text in Mathematics, 169. Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0653-8.

[4]

S. Bowong and J. Tewa, Practical adaptive synchronization of a class of uncertain chaotic systems, Nonlinear Dynam., 56 (2009), 57-68. doi: 10.1007/s11071-008-9379-6.

[5]

J. Buck and E. Buck, Biology of synchronous flashing of fireflies, Nature, 211 (1966), 562-564. doi: 10.1038/211562a0.

[6]

L. M. Childs and S. H. Strogatz, Stability diagram for the forced Kuramoto model, Chaos, 18 (2008), 043128, 9pp. doi: 10.1063/1.3049136.

[7]

Y.-P. Choi, S.-Y. Ha, S. Jung and Y. Kim, Asymptotic formation and orbital stability of phase-locked states for the Kuramoto model, Physica D, 241 (2012), 735-754. doi: 10.1016/j.physd.2011.11.011.

[8]

Y.-P. Choi, S.-Y. Ha and S.-B. Yun, Complete synchronization of Kuramoto oscillators with finite inertia, Physica D, 240 (2011), 32-44. doi: 10.1016/j.physd.2010.08.004.

[9]

N. Chopra and M. W. Spong, On exponential synchronization of Kuramoto oscillators, IEEE Trans. Automatic Control, 54 (2009), 353-357. doi: 10.1109/TAC.2008.2007884.

[10]

X. Dong, J. Xi, Z. Shi and Y. Zhong, Consensus for High-Order Time-Delayed Swarm Systems With Uncertainties and External Disturbances, in Proceedings of the 30th Chinese Control Conference, Yantai, China 2011.

[11]

F. Dorfler and F. Bullo, On the critical coupling for Kuramoto oscillators, SIAM J. Appl. Dyn. Syst., 10 (2011), 1070-1099. doi: 10.1137/10081530X.

[12]

R. Femat and G. Solis-Perales, On the chaos synchronization phenomena, Physics Letters A, 262 (1999), 50-60. doi: 10.1016/S0375-9601(99)00667-2.

[13]

S.-Y. Ha, T. Ha and J.-H. Kim, On the complete synchronization of the Kuramoto phase model, Physica D, 239 (2010), 1692-1700. doi: 10.1016/j.physd.2010.05.003.

[14]

S.-Y. Ha, E. Jeong and M.-J. Kang, Emergent behavior of a generalized Viscek-type flocking model, Nonlinearity, 23 (2010), 3139-3156. doi: 10.1088/0951-7715/23/12/008.

[15]

S.-Y. Ha and Z. Li, Complete synchronization of Kuramoto oscillators with hierarchical leadership, Communications in Mathematical Sciences, 12 (2014), 485-508. doi: 10.4310/CMS.2014.v12.n3.a5.

[16]

A. Jadbabaie, N. Motee and M. Barahona, On the stability of the Kuramoto model of coupled nonlinear oscillators, in Proceedings of the American Control Conference. Boston Massachusetts 2004.

[17]

J. Kim, J. Yang, J. Kim and H. Shim, Practical Consensus for Heterogeneous Linear Time-Varying Multi-Agent Systems, in Proceedings of 12th International Conference on Control, Automation and Systems, Jeju Island, Korea 2012.

[18]

Y. Kuramoto, Chemical Oscillations, Waves and Turbulence, Springer-Verlag Berlin 1984. doi: 10.1007/978-3-642-69689-3.

[19]

Y. Kuramoto, Self-entrainment of a population of coupled non-linear oscillators, International symposium on mathematical problems in mathematical physics, Lecture notes in theoretical physics, 39 (1975), 420-422.

[20]

P. Louodop, H. Fotsin, E. Megam Ngouonkadi, S. Bowong and H. Cerdeira, Effective Synchronization of a Class of Chua's Chaotic Systems Using an Exponential Feedback Coupling, Abstr. Appl. Anal., 2013 (2013), Art. ID 483269, 7 pp.

[21]

M. Ma, J. Zhou and J. Cai, Practical synchronization of second-order nonautonomous systems with parameter mismatch and its applications, Nonlinear Dynam., 69 (2012), 1285-1292. doi: 10.1007/s11071-012-0346-x.

[22]

M. Ma, J. Zhou and J. Cai, Practical synchronization of non autonomous systems with uncertain parameter mismatch via a single feedback control, Int. J. Mod Phys C, 23 (2012), 1250073 14pp.

[23]

R. E. Mirollo and S. H. Strogatz, The spectrum of the partially locked state for the Kuramoto model of coupled oscillator, J. Nonlinear Sci., 17 (2007), 309-347. doi: 10.1007/s00332-006-0806-x.

[24]

R. E. Mirollo and S. H. Strogatz, The spectrum of the locked state for the Kuramoto model of coupled oscillator, Physica D, 205 (2005), 249-266. doi: 10.1016/j.physd.2005.01.017.

[25]

R. E. Mirollo and S. H. Strogatz, Stability of incoherence in a populations of coupled oscillators, J. Stat. Phy., 63 (1991), 613-635. doi: 10.1007/BF01029202.

[26]

E. Ott and T. M. Antonsen, Low dimensional behavior of large systems of globally coupled oscillators, Chaos, 18 (2008), 037113, 6pp. doi: 10.1063/1.2930766.

[27]

A. Pikovsky, M. Rosenblum and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge University Press, Cambridge, 2001. doi: 10.1017/CBO9780511755743.

[28]

H. Sakaguchi, Cooperative phenomena in coupled oscillator systems under external fields, Prog. Theor. Phys., 79 (1988), 39-46. doi: 10.1143/PTP.79.39.

[29]

E. Steur, L. Kodde and H. Nijmeijer, Synchronization of Diffusively Coupled Electronic Hindmarsh-Rose Oscillators, in Dynamics and control of hybrid mechanical systems (eds. G. Leonov, H. Nijmeijer, A. Pogromsky and A. Fradkov), Singapore, World Scientific, (2010), 195-210. doi: 10.1142/9789814282321_0013.

[30]

S. H. Strogatz, Human sleep and circadian rhythms: A simple model based on two coupled oscillators, J. Math. Biol., 25 (1987), 327-347. doi: 10.1007/BF00276440.

[31]

A. T. Winfree, The Geometry of Biological Time, Springer New York 1980.

[32]

A. T. Winfree, Biological rhythms and the behavior of populations of coupled oscillators, J. Theor. Biol., 16 (1987), 15-42. doi: 10.1016/0022-5193(67)90051-3.

[33]

H. Weyl, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen, Math. Ann., 71 (1912), 441-479. doi: 10.1007/BF01456804.

show all references

References:
[1]

J. A. Acebron, L. L. Bonilla, C. J. P. Pérez Vicente, F. Ritort and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys., 77 (2005), 137-185. doi: 10.1103/RevModPhys.77.137.

[2]

T. M. Antonsen, R. T. Faghih, M. Girvan, E. Ott and J. Platig, External periodic driving of large systems of globally coupled phase oscillators, Chaos, 18 (2008), 037112, 10pp. doi: 10.1063/1.2952447.

[3]

R. Bhatia, Matrix Analysis, Graduate Text in Mathematics, 169. Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0653-8.

[4]

S. Bowong and J. Tewa, Practical adaptive synchronization of a class of uncertain chaotic systems, Nonlinear Dynam., 56 (2009), 57-68. doi: 10.1007/s11071-008-9379-6.

[5]

J. Buck and E. Buck, Biology of synchronous flashing of fireflies, Nature, 211 (1966), 562-564. doi: 10.1038/211562a0.

[6]

L. M. Childs and S. H. Strogatz, Stability diagram for the forced Kuramoto model, Chaos, 18 (2008), 043128, 9pp. doi: 10.1063/1.3049136.

[7]

Y.-P. Choi, S.-Y. Ha, S. Jung and Y. Kim, Asymptotic formation and orbital stability of phase-locked states for the Kuramoto model, Physica D, 241 (2012), 735-754. doi: 10.1016/j.physd.2011.11.011.

[8]

Y.-P. Choi, S.-Y. Ha and S.-B. Yun, Complete synchronization of Kuramoto oscillators with finite inertia, Physica D, 240 (2011), 32-44. doi: 10.1016/j.physd.2010.08.004.

[9]

N. Chopra and M. W. Spong, On exponential synchronization of Kuramoto oscillators, IEEE Trans. Automatic Control, 54 (2009), 353-357. doi: 10.1109/TAC.2008.2007884.

[10]

X. Dong, J. Xi, Z. Shi and Y. Zhong, Consensus for High-Order Time-Delayed Swarm Systems With Uncertainties and External Disturbances, in Proceedings of the 30th Chinese Control Conference, Yantai, China 2011.

[11]

F. Dorfler and F. Bullo, On the critical coupling for Kuramoto oscillators, SIAM J. Appl. Dyn. Syst., 10 (2011), 1070-1099. doi: 10.1137/10081530X.

[12]

R. Femat and G. Solis-Perales, On the chaos synchronization phenomena, Physics Letters A, 262 (1999), 50-60. doi: 10.1016/S0375-9601(99)00667-2.

[13]

S.-Y. Ha, T. Ha and J.-H. Kim, On the complete synchronization of the Kuramoto phase model, Physica D, 239 (2010), 1692-1700. doi: 10.1016/j.physd.2010.05.003.

[14]

S.-Y. Ha, E. Jeong and M.-J. Kang, Emergent behavior of a generalized Viscek-type flocking model, Nonlinearity, 23 (2010), 3139-3156. doi: 10.1088/0951-7715/23/12/008.

[15]

S.-Y. Ha and Z. Li, Complete synchronization of Kuramoto oscillators with hierarchical leadership, Communications in Mathematical Sciences, 12 (2014), 485-508. doi: 10.4310/CMS.2014.v12.n3.a5.

[16]

A. Jadbabaie, N. Motee and M. Barahona, On the stability of the Kuramoto model of coupled nonlinear oscillators, in Proceedings of the American Control Conference. Boston Massachusetts 2004.

[17]

J. Kim, J. Yang, J. Kim and H. Shim, Practical Consensus for Heterogeneous Linear Time-Varying Multi-Agent Systems, in Proceedings of 12th International Conference on Control, Automation and Systems, Jeju Island, Korea 2012.

[18]

Y. Kuramoto, Chemical Oscillations, Waves and Turbulence, Springer-Verlag Berlin 1984. doi: 10.1007/978-3-642-69689-3.

[19]

Y. Kuramoto, Self-entrainment of a population of coupled non-linear oscillators, International symposium on mathematical problems in mathematical physics, Lecture notes in theoretical physics, 39 (1975), 420-422.

[20]

P. Louodop, H. Fotsin, E. Megam Ngouonkadi, S. Bowong and H. Cerdeira, Effective Synchronization of a Class of Chua's Chaotic Systems Using an Exponential Feedback Coupling, Abstr. Appl. Anal., 2013 (2013), Art. ID 483269, 7 pp.

[21]

M. Ma, J. Zhou and J. Cai, Practical synchronization of second-order nonautonomous systems with parameter mismatch and its applications, Nonlinear Dynam., 69 (2012), 1285-1292. doi: 10.1007/s11071-012-0346-x.

[22]

M. Ma, J. Zhou and J. Cai, Practical synchronization of non autonomous systems with uncertain parameter mismatch via a single feedback control, Int. J. Mod Phys C, 23 (2012), 1250073 14pp.

[23]

R. E. Mirollo and S. H. Strogatz, The spectrum of the partially locked state for the Kuramoto model of coupled oscillator, J. Nonlinear Sci., 17 (2007), 309-347. doi: 10.1007/s00332-006-0806-x.

[24]

R. E. Mirollo and S. H. Strogatz, The spectrum of the locked state for the Kuramoto model of coupled oscillator, Physica D, 205 (2005), 249-266. doi: 10.1016/j.physd.2005.01.017.

[25]

R. E. Mirollo and S. H. Strogatz, Stability of incoherence in a populations of coupled oscillators, J. Stat. Phy., 63 (1991), 613-635. doi: 10.1007/BF01029202.

[26]

E. Ott and T. M. Antonsen, Low dimensional behavior of large systems of globally coupled oscillators, Chaos, 18 (2008), 037113, 6pp. doi: 10.1063/1.2930766.

[27]

A. Pikovsky, M. Rosenblum and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge University Press, Cambridge, 2001. doi: 10.1017/CBO9780511755743.

[28]

H. Sakaguchi, Cooperative phenomena in coupled oscillator systems under external fields, Prog. Theor. Phys., 79 (1988), 39-46. doi: 10.1143/PTP.79.39.

[29]

E. Steur, L. Kodde and H. Nijmeijer, Synchronization of Diffusively Coupled Electronic Hindmarsh-Rose Oscillators, in Dynamics and control of hybrid mechanical systems (eds. G. Leonov, H. Nijmeijer, A. Pogromsky and A. Fradkov), Singapore, World Scientific, (2010), 195-210. doi: 10.1142/9789814282321_0013.

[30]

S. H. Strogatz, Human sleep and circadian rhythms: A simple model based on two coupled oscillators, J. Math. Biol., 25 (1987), 327-347. doi: 10.1007/BF00276440.

[31]

A. T. Winfree, The Geometry of Biological Time, Springer New York 1980.

[32]

A. T. Winfree, Biological rhythms and the behavior of populations of coupled oscillators, J. Theor. Biol., 16 (1987), 15-42. doi: 10.1016/0022-5193(67)90051-3.

[33]

H. Weyl, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen, Math. Ann., 71 (1912), 441-479. doi: 10.1007/BF01456804.

[1]

Woojoo Shim. On the generic complete synchronization of the discrete Kuramoto model. Kinetic and Related Models, 2020, 13 (5) : 979-1005. doi: 10.3934/krm.2020034

[2]

Lining Ru, Xiaoping Xue. Flocking of Cucker-Smale model with intrinsic dynamics. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6817-6835. doi: 10.3934/dcdsb.2019168

[3]

Xiaoxue Zhao, Zhuchun Li. Synchronization of a Kuramoto-like model for power grids with frustration. Networks and Heterogeneous Media, 2020, 15 (3) : 543-553. doi: 10.3934/nhm.2020030

[4]

Tingting Zhu. Emergence of synchronization in Kuramoto model with frustration under general network topology. Networks and Heterogeneous Media, 2022, 17 (2) : 255-291. doi: 10.3934/nhm.2022005

[5]

Raffaele Esposito, Yan Guo, Rossana Marra. Validity of the Boltzmann equation with an external force. Kinetic and Related Models, 2011, 4 (2) : 499-515. doi: 10.3934/krm.2011.4.499

[6]

Fei Meng, Xiao-Ping Yang. Elastic limit and vanishing external force for granular systems. Kinetic and Related Models, 2019, 12 (1) : 159-176. doi: 10.3934/krm.2019007

[7]

Huaiyu Jian, Hongjie Ju, Wei Sun. Traveling fronts of curve flow with external force field. Communications on Pure and Applied Analysis, 2010, 9 (4) : 975-986. doi: 10.3934/cpaa.2010.9.975

[8]

Hongjun Yu. Global classical solutions to the Boltzmann equation with external force. Communications on Pure and Applied Analysis, 2009, 8 (5) : 1647-1668. doi: 10.3934/cpaa.2009.8.1647

[9]

Seung-Yeal Ha, Jaeseung Lee, Zhuchun Li. Emergence of local synchronization in an ensemble of heterogeneous Kuramoto oscillators. Networks and Heterogeneous Media, 2017, 12 (1) : 1-24. doi: 10.3934/nhm.2017001

[10]

Chun-Hsiung Hsia, Chang-Yeol Jung, Bongsuk Kwon. On the global convergence of frequency synchronization for Kuramoto and Winfree oscillators. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3319-3334. doi: 10.3934/dcdsb.2018322

[11]

T. Tachim Medjo. A non-autonomous 3D Lagrangian averaged Navier-Stokes-$\alpha$ model with oscillating external force and its global attractor. Communications on Pure and Applied Analysis, 2011, 10 (2) : 415-433. doi: 10.3934/cpaa.2011.10.415

[12]

Paolo Antonelli, Seung-Yeal Ha, Dohyun Kim, Pierangelo Marcati. The Wigner-Lohe model for quantum synchronization and its emergent dynamics. Networks and Heterogeneous Media, 2017, 12 (3) : 403-416. doi: 10.3934/nhm.2017018

[13]

Zhigang Wu, Wenjun Wang. Uniform stability of the Boltzmann equation with an external force near vacuum. Communications on Pure and Applied Analysis, 2015, 14 (3) : 811-823. doi: 10.3934/cpaa.2015.14.811

[14]

Takeshi Taniguchi. The exponential behavior of Navier-Stokes equations with time delay external force. Discrete and Continuous Dynamical Systems, 2005, 12 (5) : 997-1018. doi: 10.3934/dcds.2005.12.997

[15]

Steady Mushayabasa, Drew Posny, Jin Wang. Modeling the intrinsic dynamics of foot-and-mouth disease. Mathematical Biosciences & Engineering, 2016, 13 (2) : 425-442. doi: 10.3934/mbe.2015010

[16]

Young-Pil Choi, Seung-Yeal Ha, Javier Morales. Emergent dynamics of the Kuramoto ensemble under the effect of inertia. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 4875-4913. doi: 10.3934/dcds.2018213

[17]

Jianquan Li, Zuren Feng, Juan Zhang, Jie Lou. A competition model of the chemostat with an external inhibitor. Mathematical Biosciences & Engineering, 2006, 3 (1) : 111-123. doi: 10.3934/mbe.2006.3.111

[18]

Mohcine Chraibi, Ulrich Kemloh, Andreas Schadschneider, Armin Seyfried. Force-based models of pedestrian dynamics. Networks and Heterogeneous Media, 2011, 6 (3) : 425-442. doi: 10.3934/nhm.2011.6.425

[19]

Shaofei Wu, Mingqing Wang, Maozhu Jin, Yuntao Zou, Lijun Song. Uniform $L^1$ stability of the inelastic Boltzmann equation with large external force for hard potentials. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1005-1013. doi: 10.3934/dcdss.2019068

[20]

Renjun Duan, Tong Yang, Changjiang Zhu. Boltzmann equation with external force and Vlasov-Poisson-Boltzmann system in infinite vacuum. Discrete and Continuous Dynamical Systems, 2006, 16 (1) : 253-277. doi: 10.3934/dcds.2006.16.253

2021 Impact Factor: 1.41

Metrics

  • PDF downloads (274)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]