-
Previous Article
Regularity of densities in relaxed and penalized average distance problem
- NHM Home
- This Issue
-
Next Article
Practical synchronization of generalized Kuramoto systems with an intrinsic dynamics
(Almost) Everything you always wanted to know about deterministic control problems in stratified domains
1. | Laboratoire de Mathématiques et Physique Théorique(UMR CNRS 7350), Fédération Denis Poisson (FR CNRS 2964), Université François Rabelais, Parc de Grandmont, 37200 Tours, France, France |
References:
[1] |
Y. Achdou, F. Camilli, A. Cutri and N. Tchou, Hamilton-Jacobi equations constrained on networks, NoDea Nonlinear Differential Equations Appl., 20 (2013), 413-445.
doi: 10.1007/s00030-012-0158-1. |
[2] |
Adimurthi, S. Mishra and G. D. Veerappa Gowda, Explicit Hopf-Lax type formulas for Hamilton-Jacobi equations and conservation laws with discontinuous coefficients, J. Differential Equations, 241 (2007), 1-31.
doi: 10.1016/j.jde.2007.05.039. |
[3] |
J.-P. Aubin and H. Frankowska, Set-Valued Analysis, Systems & Control: Foundations & Applications, 2. Birkhäuser Boston, Inc., Boston, MA, 1990. |
[4] |
M. Bardi and I. Capuzzo Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi- Bellman Equations, Systems & Control: Foundations & Applications, Birkhauser Boston Inc., Boston, MA, 1997.
doi: 10.1007/978-0-8176-4755-1. |
[5] |
G. Barles, Solutions de Viscosité des Équations de Hamilton-Jacobi, Springer-Verlag, Paris, 1994. |
[6] |
G. Barles, A. Briani and E. Chasseigne, A Bellman approach for two-domains optimal control problems in $\mathbb{R}^N2$, ESAIM COCV, 19 (2013), 710-739.
doi: 10.1051/cocv/2012030. |
[7] |
G. Barles, A. Briani and E. Chasseigne, A Bellman approach for regional optimal control problems in $\mathbb{R}^N2$, SIAM J. Control Optim., 52 (2014), 1712-1744.
doi: 10.1137/130922288. |
[8] |
G. Barles, A. Briani, E. Chasseigne and N. Tchou, Homogenization Results for a Deterministic Multi-domains Periodic Control Problem, preprint, arXiv:1405.0661. |
[9] |
G. Barles and E. R. Jakobsen, On the convergence rate of approximation schemes for Hamilton-Jacobi-Bellman equations, M2AN, 36 (2002), 33-54.
doi: 10.1051/m2an:2002002. |
[10] |
G. Barles and B. Perthame, Exit time problems in optimal control and vanishing viscosity method, SIAM J. in Control and Optimisation, 26 (1988), 1133-1148.
doi: 10.1137/0326063. |
[11] |
R. Barnard and P. Wolenski, Flow invariance on stratified domains, Set-Valued and Variational Analysis, 21 (2013), 377-403.
doi: 10.1007/s11228-013-0230-y. |
[12] |
A. Bressan and Y. Hong, Optimal control problems on stratified domains, Netw. Heterog. Media., 2 (2007), 313-331 (electronic) and Errata corrige: Optimal control problems on stratified domains. Netw. Heterog. Media., 8 (2013), p625.
doi: 10.3934/nhm.2007.2.313. |
[13] |
F. Camilli and D. Schieborn, Viscosity solutions of Eikonal equations on topological networks, Calc. Var. Partial Differential Equations, 46 (2013), 671-686.
doi: 10.1007/s00526-012-0498-z. |
[14] |
F. Camilli, C. Marchi and D. Schieborn, Eikonal equations on ramified spaces, Interfaces Free Bound, 15 (2013), 121-140.
doi: 10.4171/IFB/297. |
[15] |
F Camilli and A. Siconolfi, Time-dependent measurable Hamilton-Jacobi equations, Comm. in Par. Diff. Eq., 30 (2005), 813-847.
doi: 10.1081/PDE-200059292. |
[16] |
G. Coclite and N. Risebro, Viscosity solutions of Hamilton-Jacobi equations with discontinuous coefficients, J. Hyperbolic Differ. Equ., 4 (2007), 771-795.
doi: 10.1142/S0219891607001355. |
[17] |
C. De Zan and P. Soravia, Cauchy problems for noncoercive Hamilton-Jacobi-Isaacs equations with discontinuous coefficients, Interfaces Free Bound, 12 (2010), 347-368.
doi: 10.4171/IFB/238. |
[18] |
K. Deckelnick and C. Elliott, Uniqueness and error analysis for Hamilton-Jacobi equations with discontinuities, Interfaces Free Bound, 6 (2004), 329-349.
doi: 10.4171/IFB/103. |
[19] |
P. Dupuis, A numerical method for a calculus of variations problem with discontinuous integrand, Applied stochastic analysis (New Brunswick, NJ, 1991), 90-107, Lecture Notes in Control and Inform. Sci., 177, Springer, Berlin, 1992.
doi: 10.1007/BFb0007050. |
[20] |
W. H. Fleming and H. M. Soner, Controlled Markov Processes and Viscosity Solutions, Applications of Mathematics, Springer-Verlag, New York, 1993. |
[21] |
M. Garavello and P. Soravia, Optimality principles and uniqueness for Bellman equations of unbounded control problems with discontinuous running cost, NoDEA Nonlinear Differential Equations Appl. 11 (2004), 271-298.
doi: 10.1007/s00030-004-1058-9. |
[22] |
M. Garavello and P. Soravia, Representation formulas for solutions of the HJI equations with discontinuous coefficients and existence of value in differential games, J. Optim. Theory Appl., 130 (2006), 209-229.
doi: 10.1007/s10957-006-9099-3. |
[23] |
Y. Giga, P. Gòrka and P. Rybka, A comparison principle for Hamilton-Jacobi equations with discontinuous Hamiltonians, Proc. Amer. Math. Soc., 139 (2011), 1777-1785.
doi: 10.1090/S0002-9939-2010-10630-5. |
[24] |
C. Imbert, R. Monneau and H. Zidani, A Hamilton-Jacobi approach to junction problems and application to traffic flows, ESAIM: COCV, 19 (2013), 129-166.
doi: 10.1051/cocv/2012002. |
[25] |
C. Imbert and R. Monneau, Quasi-convex Hamilton-Jacobi equations posed on junctions: The multi-dimensional case, preprint, arXiv:1410.3056. |
[26] |
C. Imbert and R. Monneau, Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks, preprint , arXiv:1306.2428. |
[27] |
H. Ishii, Hamilton-Jacobi Equations with discontinuous Hamiltonians on arbitrary open sets, Bull. Fac. Sci. Eng. Chuo Univ., 28 (1985), 33-77. |
[28] |
Z. Rao and H. Zidani, Hamilton-Jacobi-Bellman Equations on Multi-Domains, Control and Optimization with PDE Constraints, International Series of Numerical Mathematics, 164, Birkhäuser Basel, 2013.
doi: 10.1007/978-3-0348-0631-2_6. |
[29] |
Z. Rao, A. Siconolfi and H. Zidani, Transmission conditions on interfaces for Hamilton-Jacobi-Bellman equations, J. Differential Equations, 257 (2014), 3978-4014.
doi: 10.1016/j.jde.2014.07.015. |
[30] |
P. Soravia, Degenerate eikonal equations with discontinuous refraction index, ESAIM COCV, 12 (2006), 216-230.
doi: 10.1051/cocv:2005033. |
[31] |
H. Whitney, Tangents to an analytic variety, Annals of Mathematics, 81 (1965), 496-549.
doi: 10.2307/1970400. |
[32] |
H. Whitney, Local properties of analytic varieties, Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), pp. 205-244, Princeton Univ. Press, Princeton, N. J., 1965. |
show all references
References:
[1] |
Y. Achdou, F. Camilli, A. Cutri and N. Tchou, Hamilton-Jacobi equations constrained on networks, NoDea Nonlinear Differential Equations Appl., 20 (2013), 413-445.
doi: 10.1007/s00030-012-0158-1. |
[2] |
Adimurthi, S. Mishra and G. D. Veerappa Gowda, Explicit Hopf-Lax type formulas for Hamilton-Jacobi equations and conservation laws with discontinuous coefficients, J. Differential Equations, 241 (2007), 1-31.
doi: 10.1016/j.jde.2007.05.039. |
[3] |
J.-P. Aubin and H. Frankowska, Set-Valued Analysis, Systems & Control: Foundations & Applications, 2. Birkhäuser Boston, Inc., Boston, MA, 1990. |
[4] |
M. Bardi and I. Capuzzo Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi- Bellman Equations, Systems & Control: Foundations & Applications, Birkhauser Boston Inc., Boston, MA, 1997.
doi: 10.1007/978-0-8176-4755-1. |
[5] |
G. Barles, Solutions de Viscosité des Équations de Hamilton-Jacobi, Springer-Verlag, Paris, 1994. |
[6] |
G. Barles, A. Briani and E. Chasseigne, A Bellman approach for two-domains optimal control problems in $\mathbb{R}^N2$, ESAIM COCV, 19 (2013), 710-739.
doi: 10.1051/cocv/2012030. |
[7] |
G. Barles, A. Briani and E. Chasseigne, A Bellman approach for regional optimal control problems in $\mathbb{R}^N2$, SIAM J. Control Optim., 52 (2014), 1712-1744.
doi: 10.1137/130922288. |
[8] |
G. Barles, A. Briani, E. Chasseigne and N. Tchou, Homogenization Results for a Deterministic Multi-domains Periodic Control Problem, preprint, arXiv:1405.0661. |
[9] |
G. Barles and E. R. Jakobsen, On the convergence rate of approximation schemes for Hamilton-Jacobi-Bellman equations, M2AN, 36 (2002), 33-54.
doi: 10.1051/m2an:2002002. |
[10] |
G. Barles and B. Perthame, Exit time problems in optimal control and vanishing viscosity method, SIAM J. in Control and Optimisation, 26 (1988), 1133-1148.
doi: 10.1137/0326063. |
[11] |
R. Barnard and P. Wolenski, Flow invariance on stratified domains, Set-Valued and Variational Analysis, 21 (2013), 377-403.
doi: 10.1007/s11228-013-0230-y. |
[12] |
A. Bressan and Y. Hong, Optimal control problems on stratified domains, Netw. Heterog. Media., 2 (2007), 313-331 (electronic) and Errata corrige: Optimal control problems on stratified domains. Netw. Heterog. Media., 8 (2013), p625.
doi: 10.3934/nhm.2007.2.313. |
[13] |
F. Camilli and D. Schieborn, Viscosity solutions of Eikonal equations on topological networks, Calc. Var. Partial Differential Equations, 46 (2013), 671-686.
doi: 10.1007/s00526-012-0498-z. |
[14] |
F. Camilli, C. Marchi and D. Schieborn, Eikonal equations on ramified spaces, Interfaces Free Bound, 15 (2013), 121-140.
doi: 10.4171/IFB/297. |
[15] |
F Camilli and A. Siconolfi, Time-dependent measurable Hamilton-Jacobi equations, Comm. in Par. Diff. Eq., 30 (2005), 813-847.
doi: 10.1081/PDE-200059292. |
[16] |
G. Coclite and N. Risebro, Viscosity solutions of Hamilton-Jacobi equations with discontinuous coefficients, J. Hyperbolic Differ. Equ., 4 (2007), 771-795.
doi: 10.1142/S0219891607001355. |
[17] |
C. De Zan and P. Soravia, Cauchy problems for noncoercive Hamilton-Jacobi-Isaacs equations with discontinuous coefficients, Interfaces Free Bound, 12 (2010), 347-368.
doi: 10.4171/IFB/238. |
[18] |
K. Deckelnick and C. Elliott, Uniqueness and error analysis for Hamilton-Jacobi equations with discontinuities, Interfaces Free Bound, 6 (2004), 329-349.
doi: 10.4171/IFB/103. |
[19] |
P. Dupuis, A numerical method for a calculus of variations problem with discontinuous integrand, Applied stochastic analysis (New Brunswick, NJ, 1991), 90-107, Lecture Notes in Control and Inform. Sci., 177, Springer, Berlin, 1992.
doi: 10.1007/BFb0007050. |
[20] |
W. H. Fleming and H. M. Soner, Controlled Markov Processes and Viscosity Solutions, Applications of Mathematics, Springer-Verlag, New York, 1993. |
[21] |
M. Garavello and P. Soravia, Optimality principles and uniqueness for Bellman equations of unbounded control problems with discontinuous running cost, NoDEA Nonlinear Differential Equations Appl. 11 (2004), 271-298.
doi: 10.1007/s00030-004-1058-9. |
[22] |
M. Garavello and P. Soravia, Representation formulas for solutions of the HJI equations with discontinuous coefficients and existence of value in differential games, J. Optim. Theory Appl., 130 (2006), 209-229.
doi: 10.1007/s10957-006-9099-3. |
[23] |
Y. Giga, P. Gòrka and P. Rybka, A comparison principle for Hamilton-Jacobi equations with discontinuous Hamiltonians, Proc. Amer. Math. Soc., 139 (2011), 1777-1785.
doi: 10.1090/S0002-9939-2010-10630-5. |
[24] |
C. Imbert, R. Monneau and H. Zidani, A Hamilton-Jacobi approach to junction problems and application to traffic flows, ESAIM: COCV, 19 (2013), 129-166.
doi: 10.1051/cocv/2012002. |
[25] |
C. Imbert and R. Monneau, Quasi-convex Hamilton-Jacobi equations posed on junctions: The multi-dimensional case, preprint, arXiv:1410.3056. |
[26] |
C. Imbert and R. Monneau, Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks, preprint , arXiv:1306.2428. |
[27] |
H. Ishii, Hamilton-Jacobi Equations with discontinuous Hamiltonians on arbitrary open sets, Bull. Fac. Sci. Eng. Chuo Univ., 28 (1985), 33-77. |
[28] |
Z. Rao and H. Zidani, Hamilton-Jacobi-Bellman Equations on Multi-Domains, Control and Optimization with PDE Constraints, International Series of Numerical Mathematics, 164, Birkhäuser Basel, 2013.
doi: 10.1007/978-3-0348-0631-2_6. |
[29] |
Z. Rao, A. Siconolfi and H. Zidani, Transmission conditions on interfaces for Hamilton-Jacobi-Bellman equations, J. Differential Equations, 257 (2014), 3978-4014.
doi: 10.1016/j.jde.2014.07.015. |
[30] |
P. Soravia, Degenerate eikonal equations with discontinuous refraction index, ESAIM COCV, 12 (2006), 216-230.
doi: 10.1051/cocv:2005033. |
[31] |
H. Whitney, Tangents to an analytic variety, Annals of Mathematics, 81 (1965), 496-549.
doi: 10.2307/1970400. |
[32] |
H. Whitney, Local properties of analytic varieties, Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), pp. 205-244, Princeton Univ. Press, Princeton, N. J., 1965. |
[1] |
Steven Richardson, Song Wang. The viscosity approximation to the Hamilton-Jacobi-Bellman equation in optimal feedback control: Upper bounds for extended domains. Journal of Industrial and Management Optimization, 2010, 6 (1) : 161-175. doi: 10.3934/jimo.2010.6.161 |
[2] |
Alberto Bressan, Yunho Hong. Optimal control problems on stratified domains. Networks and Heterogeneous Media, 2007, 2 (2) : 313-331. doi: 10.3934/nhm.2007.2.313 |
[3] |
Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete and Continuous Dynamical Systems, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521 |
[4] |
Zhen-Zhen Tao, Bing Sun. A feedback design for numerical solution to optimal control problems based on Hamilton-Jacobi-Bellman equation. Electronic Research Archive, 2021, 29 (5) : 3429-3447. doi: 10.3934/era.2021046 |
[5] |
Guy Barles, Emmanuel Chasseigne. Corrigendum to "(Almost) everything you always wanted to know about deterministic control problems in stratified domains". Networks and Heterogeneous Media, 2018, 13 (2) : 373-378. doi: 10.3934/nhm.2018016 |
[6] |
Cristopher Hermosilla. Stratified discontinuous differential equations and sufficient conditions for robustness. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4415-4437. doi: 10.3934/dcds.2015.35.4415 |
[7] |
Rein Luus. Optimal control of oscillatory systems by iterative dynamic programming. Journal of Industrial and Management Optimization, 2008, 4 (1) : 1-15. doi: 10.3934/jimo.2008.4.1 |
[8] |
Giuseppe Maria Coclite, Lorenzo di Ruvo. Discontinuous solutions for the generalized short pulse equation. Evolution Equations and Control Theory, 2019, 8 (4) : 737-753. doi: 10.3934/eect.2019036 |
[9] |
Boris Andreianov, Kenneth H. Karlsen, Nils H. Risebro. On vanishing viscosity approximation of conservation laws with discontinuous flux. Networks and Heterogeneous Media, 2010, 5 (3) : 617-633. doi: 10.3934/nhm.2010.5.617 |
[10] |
Jean-Claude Zambrini. On the geometry of the Hamilton-Jacobi-Bellman equation. Journal of Geometric Mechanics, 2009, 1 (3) : 369-387. doi: 10.3934/jgm.2009.1.369 |
[11] |
Bian-Xia Yang, Shanshan Gu, Guowei Dai. Existence and multiplicity for Hamilton-Jacobi-Bellman equation. Communications on Pure and Applied Analysis, 2021, 20 (11) : 3767-3793. doi: 10.3934/cpaa.2021130 |
[12] |
Roberta Ghezzi, Benedetto Piccoli. Optimal control of a multi-level dynamic model for biofuel production. Mathematical Control and Related Fields, 2017, 7 (2) : 235-257. doi: 10.3934/mcrf.2017008 |
[13] |
B. M. Adams, H. T. Banks, Hee-Dae Kwon, Hien T. Tran. Dynamic Multidrug Therapies for HIV: Optimal and STI Control Approaches. Mathematical Biosciences & Engineering, 2004, 1 (2) : 223-241. doi: 10.3934/mbe.2004.1.223 |
[14] |
Gang Li, Fen Gu, Feida Jiang. Positive viscosity solutions of a third degree homogeneous parabolic infinity Laplace equation. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1449-1462. doi: 10.3934/cpaa.2020071 |
[15] |
Pierpaolo Soravia. Existence of absolute minimizers for noncoercive Hamiltonians and viscosity solutions of the Aronsson equation. Mathematical Control and Related Fields, 2012, 2 (4) : 399-427. doi: 10.3934/mcrf.2012.2.399 |
[16] |
Jingyu Li, Chuangchuang Liang. Viscosity dominated limit of global solutions to a hyperbolic equation in MEMS. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 833-849. doi: 10.3934/dcds.2016.36.833 |
[17] |
Peng Chen, Xiaochun Liu. Positive solutions for Choquard equation in exterior domains. Communications on Pure and Applied Analysis, 2021, 20 (6) : 2237-2256. doi: 10.3934/cpaa.2021065 |
[18] |
Anya Désilles, Hélène Frankowska. Explicit construction of solutions to the Burgers equation with discontinuous initial-boundary conditions. Networks and Heterogeneous Media, 2013, 8 (3) : 727-744. doi: 10.3934/nhm.2013.8.727 |
[19] |
Thierry Horsin, Peter I. Kogut, Olivier Wilk. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions. Mathematical Control and Related Fields, 2016, 6 (4) : 595-628. doi: 10.3934/mcrf.2016017 |
[20] |
Minzilia A. Sagadeeva, Sophiya A. Zagrebina, Natalia A. Manakova. Optimal control of solutions of a multipoint initial-final problem for non-autonomous evolutionary Sobolev type equation. Evolution Equations and Control Theory, 2019, 8 (3) : 473-488. doi: 10.3934/eect.2019023 |
2021 Impact Factor: 1.41
Tools
Metrics
Other articles
by authors
[Back to Top]