\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Explicit formulation for the Dirichlet problem for parabolic-hyperbolic conservation laws

Abstract Related Papers Cited by
  • We revisit the Cauchy-Dirichlet problem for degenerate parabolic scalar conservation laws. We suggest a new notion of strong entropy solution. It gives a straightforward explicit characterization of the boundary values of the solution and of the flux, and leads to a concise and natural uniqueness proof, compared to the one of the fundamental work [J. Carrillo, Arch. Ration. Mech. Anal., 1999]. Moreover, general dissipative boundary conditions can be studied in the same framework. The definition makes sense under the specific weak trace-regularity assumption. Despite the lack of evidence that generic solutions are trace-regular (especially in space dimension larger than one), the strong entropy formulation may be useful for modeling and numerical purposes.
    Mathematics Subject Classification: Primary: 35M13; Secondary: 35L04.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J. Aleksic and D. Mitrovic, Strong traces for averaged solutions of heterogeneous ultra-parabolic transport equations, J. Hyperb. Differ. Equ., 10 (2013), 659-676.doi: 10.1142/S0219891613500239.

    [2]

    K. Ammar, P. Wittbold and J. Carrillo, Scalar conservation laws with general boundary condition and continuous flux function, J. Differ. Equ., 228 (2006), 111-139.doi: 10.1016/j.jde.2006.05.002.

    [3]

    B. Andreianov, M. Bendahmane and K. H. Karlsen, Discrete duality finite volume schemes for doubly nonlinear degenerate hyperbolic-parabolic equations, J. Hyperb. Differ. Equ., 7 (2010), 1-67.doi: 10.1142/S0219891610002062.

    [4]

    B. Andreianov and F. Bouhsiss, Uniqueness for an elliptic-parabolic problem with Neumann boundary condition, J. Evol. Equ., 4 (2004), 273-295.doi: 10.1007/s00028-004-0143-1.

    [5]

    B. Andreianov and M. Karimou Gazibo, Entropy formulation of degenerate parabolic equation with zero-flux boundary condition, Z. Angew. Math. Phys., 64 (2013), 1471-1491.doi: 10.1007/s00033-012-0297-6.

    [6]

    B. Andreianov and M. Karimou Gazibo, Convergence of finite volume scheme for degenerate parabolic problem with zero flux boundary condition, Finite Volumes for Complex Applications VII-Methods and Theoretical Aspects, Springer Proc. Math. Stat., 77 (2014), 303-311.doi: 10.1007/978-3-319-05684-5_29.

    [7]

    B. Andreianov and K. Shibi, Scalar conservation laws with nonlinear boundary conditions, C. R. Acad. Paris Ser. I Math., 345 (2007), 431-434.doi: 10.1016/j.crma.2007.09.008.

    [8]

    B. Andreianov and K. Sbihi, Well-posedness of general boundary-value problems for scalar conservation laws, Trans. AMS, 367 (2015), 3763-3806.doi: 10.1090/S0002-9947-2015-05988-1.

    [9]

    C. Bardos, A.-Y. LeRoux and J.-C. Nédélec, First order quasilinear equations with boundary conditions, Comm. PDE, 4 (1979), 1017-1034.doi: 10.1080/03605307908820117.

    [10]

    Ph. Bénilan, Equations D'évolution dans un Espace de Banach Quelconque et Applications, Thèse d'état, Orsay, 1972.

    [11]

    Ph. Bénilan, M. G. Crandall and A. Pazy, Nonlinear evolution equations in Banach spaces, Preprint book.

    [12]

    Ph. Bénilan, J. Carrillo and P. Wittbold, Renormalized entropy solutions of scalar conservation laws, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 29 (2000), 313-327.

    [13]

    R. Bürger, H. Frid and K.H. Karlsen, On the well-posedness of entropy solution to conservation laws with a zero-flux boundary condition, J. Math. Anal. Appl., 326 (2007), 108-120.doi: 10.1016/j.jmaa.2006.02.072.

    [14]

    R. Bürger, H. Frid and K. H. Karlsen, On a free boundary problem for a strongly degenerate quasilinear parabolic equation with an application to a model of presssure filtration, SIAM J. Math. Anal., 34 (2003) 611-635.

    [15]

    C. Cancès, Th. Gallouët and A. Porretta, Two-phase flows involving capillary barriers in heterogeneous porous media, Interfaces Free Bound, 11 (2009), 239-258.doi: 10.4171/IFB/210.

    [16]

    J. Carrillo, Entropy solutions for nonlinear degenerate problems, Arch. Ration. Mech. Anal., 147 (1999), 269-361.doi: 10.1007/s002050050152.

    [17]

    G.-Q. Chen and H. Frid, Divergence-measure fields and hyperbolic conservation laws, Arch. Ration. Mech. Anal., 147 (1999), 89-118.doi: 10.1007/s002050050146.

    [18]

    R. Colombo and E. Rossi, Rigorous estimates on balance laws in bounded domains, Acta Mathematica Sci., 35 (2015), 906-944.doi: 10.1016/S0252-9602(15)30028-X.

    [19]

    F. Dubois and Ph. LeFloch, Boundary condition for nonlinear hyperbolic conservation laws, J. Differ. Equ., 71 (1988), 93-122.doi: 10.1016/0022-0396(88)90040-X.

    [20]

    S. Evje and K. H. Karlsen, Monotone difference approximations of BV solutions to degenerate convection-diffusion equations, SIAM J. Numer. Anal., 37 (2000), 1838-1860.doi: 10.1137/S0036142998336138.

    [21]

    G. Gagneux and M. Madaune-Tort, Analyse Mathématique de Modeles Nonlinéaires de L'ingénierie Pétroliere, Math. et Appl., 22. Springer-Verlag, Berlin, 1996.

    [22]

    M. Karimou Gazibo, Degenerate Convection-Diffusion Equation with a Robin boundary condition, In F. Ancona et al., eds. Hyperbolic Problems : Theory, Numerics, Applications, Proceedings of 14th HYP conference in Padua, AIMS series in Appl. Math., 8 (2014), 583-590.

    [23]

    M. Karimou Gazibo, Degenerate parabolic equation with zero flux boundary condition and its approximations, Preprint available at http://hal.archives-ouvertes.fr/hal-00855746.

    [24]

    M. Karimou Gazibo, Études Mathématiques et Numériques des Problèmes Paraboliques Avec Des Conditions Aux Limites, Thèse de Doctorat Besançon, 2013.

    [25]

    S. N. Kruzhkov, First order quasi-linear equations in several independent variables, Math. USSR Sb., 10 (1970), 217-243.

    [26]

    Y. S. Kwon, Strong traces for degenerate parabolic-hyperbolic equations, Discrete Contin. Dyn. Syst., 25 (2009), 1275-1286.doi: 10.3934/dcds.2009.25.1275.

    [27]

    M. Maliki and H. Touré, Uniqueness of entropy solutions for nonlinear degenerate parabolic problems, J. Evol. Equ., 3 (2003), 603-622.doi: 10.1007/s00028-003-0105-z.

    [28]

    F. Otto, Initial-boundary value problem for a scalar conservation laws, C. R. Acad. Sci. Paris Sér I Math., 322 (1996), 729-734.

    [29]

    C. Mascia, A. Porretta and A. Terracina, Nonhomogeneous Dirichlet problems for degenerate parabolic-hyperbolic equation, Arch. Ration. Mech. Anal., 163 (2002), 87-124.doi: 10.1007/s002050200184.

    [30]

    A. Michel and J. Vovelle, Entropy formulation for parabolic degenerate equations with general Dirichlet boundary conditions and application to the convergence of FV methods, SIAM J. Numer. Anal., 41 (2003), 2262-2293.doi: 10.1137/S0036142902406612.

    [31]

    E. Yu. Panov, On the theory of generalized entropy solutions of Cauchy problem for a first-order quasilinear equation in the class of locally integrable functions, Iszvestiya Math., 66 (2002), 1171-1218 (in Russian).doi: 10.1070/IM2002v066n06ABEH000411.

    [32]

    E. Yu. Panov, Existence of strong traces for quasi-solutions of multi-dimensional scalar conservation laws, J. Hyp. Diff. Equ., 4 (2009), 729-770.doi: 10.1142/S0219891607001343.

    [33]

    E. Yu. Panov, On the strong pre-compactness property for entropy solutions of a degenerate elliptic equation with discontinuous flux, J. Differ. Equ., 247 (2009), 2821-2870.doi: 10.1016/j.jde.2009.08.022.

    [34]

    A. Porretta and J. Vovelle, $L^1$ solutions to first order hyperbolic equations in bounded domains, Comm. PDEs, 28 (2003), 381-408.doi: 10.1081/PDE-120019387.

    [35]

    E. Rouvre and G. Gagneux, Formulation forte entropique de lois scalaires hyperboliques-paraboliques dégénérées, An. Fac. Sci. Toulouse, 10 (2001), 163-183.doi: 10.5802/afst.987.

    [36]

    T. Tassa, Regularity of weak solutions of the nonlinear Fokker-Planck equation, Math. Res. Lett., 3 (1996), 475-490.doi: 10.4310/MRL.1996.v3.n4.a6.

    [37]

    G. Vallet, Dirichlet problem for a degenerated hyperbolic-parabolic equation, Advance in Math. Sci. Appl., 15 (2005), 423-450.

    [38]

    A. Vasseur, Strong traces for solutions of multidimensional scalar conservation laws, Arch. Ration. Mech. Anal., 160 (2001), 181-193.doi: 10.1007/s002050100157.

    [39]

    A. I. Vol'pert and S. I. Hudjaev, Cauchy problem for degenerate second order quasilinear parabolic equations, Math. USSR Sbornik, 78 (1969), 374-396.

    [40]

    J. Vovelle, Convergence of finite volume monotones schemes for scalar conservation laws on bounded domains, Numer. Math., 90 (2002), 563-596.doi: 10.1007/s002110100307.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(136) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return