Citation: |
[1] |
L. Ambrosio, Transport equation and Cauchy problem for $BV$ vector fields, Invent. Math., 158 (2004), 227-260.doi: 10.1007/s00222-004-0367-2. |
[2] |
L. Ambrosio and G. Crippa, Continuity equations and ODE flows with non-smooth velocity, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 1191-1244.doi: 10.1017/S0308210513000085. |
[3] |
L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, $2^{nd}$ edition, Lectures in Mathematics, ETH Zurich, Birkhäuser, 2005. |
[4] |
L. Ambrosio, M. Lecumberry and S. Maniglia, Lipschitz regularity and approximate differentiability of the DiPerna-Lions flow, Rend. Sem. Mat. Univ. Padova, 114 (2005), 29-50. |
[5] |
F. Bouchut and G. Crippa, Lagrangian flows for vector fields with gradient given by a singular integral, J. Hyperbolic Differ. Equ., 10 (2013), 235-282.doi: 10.1142/S0219891613500100. |
[6] |
A. Clop, R. Jiang, J. Mateu and J. Orobitg, Linear transport equations for vector fields with subexponentially integrable divergence, Calc. Var. Partial Differential Equations, 55 (2016), p21, arXiv:1502.05303doi: 10.1007/s00526-016-0956-0. |
[7] |
M. Colombo, G. Crippa and S. Spirito, Renormalized solutions to the continuity equation with an integrable damping term, Calc. Var. PDE, 54 (2015), 1831-1845.doi: 10.1007/s00526-015-0845-y. |
[8] |
G. Crippa and C. De Lellis, Estimates for transport equations and regularity of the DiPerna-Lions flow, J. Reine Angew. Math., 616 (2008), 15-46.doi: 10.1515/CRELLE.2008.016. |
[9] |
B. Desjardins, A few remarks on ordinary differential equations, Comm. Partial Diff. Eq., 21 (1996), 1667-1703.doi: 10.1080/03605309608821242. |
[10] |
R. J. DiPerna and P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., 98 (1989), 511-547.doi: 10.1007/BF01393835. |
[11] |
F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math., 14 (1961), 415-426.doi: 10.1002/cpa.3160140317. |
[12] |
P. B. Mucha, Transport equation: Extension of classical results for div $b \in BMO$, J. Differential Equations, 249 (2010), 1871-1883.doi: 10.1016/j.jde.2010.07.015. |