-
Previous Article
A coupling between a non--linear 1D compressible--incompressible limit and the 1D $p$--system in the non smooth case
- NHM Home
- This Issue
-
Next Article
A singular limit problem for conservation laws related to the Kawahara-Korteweg-de Vries equation
Logarithmic estimates for continuity equations
1. | Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa |
2. | Departement Mathematik und Informatik, Universität Basel, Spiegelgasse 1, 4051 Basel |
3. | GSSI - Gran Sasso Science Institute, Viale Francesco Crispi 7, 67100 L'Aquila |
References:
[1] |
L. Ambrosio, Transport equation and Cauchy problem for $BV$ vector fields, Invent. Math., 158 (2004), 227-260.
doi: 10.1007/s00222-004-0367-2. |
[2] |
L. Ambrosio and G. Crippa, Continuity equations and ODE flows with non-smooth velocity, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 1191-1244.
doi: 10.1017/S0308210513000085. |
[3] |
L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, $2^{nd}$ edition, Lectures in Mathematics, ETH Zurich, Birkhäuser, 2005. |
[4] |
L. Ambrosio, M. Lecumberry and S. Maniglia, Lipschitz regularity and approximate differentiability of the DiPerna-Lions flow, Rend. Sem. Mat. Univ. Padova, 114 (2005), 29-50. |
[5] |
F. Bouchut and G. Crippa, Lagrangian flows for vector fields with gradient given by a singular integral, J. Hyperbolic Differ. Equ., 10 (2013), 235-282.
doi: 10.1142/S0219891613500100. |
[6] |
A. Clop, R. Jiang, J. Mateu and J. Orobitg, Linear transport equations for vector fields with subexponentially integrable divergence, Calc. Var. Partial Differential Equations, 55 (2016), p21, arXiv:1502.05303
doi: 10.1007/s00526-016-0956-0. |
[7] |
M. Colombo, G. Crippa and S. Spirito, Renormalized solutions to the continuity equation with an integrable damping term, Calc. Var. PDE, 54 (2015), 1831-1845.
doi: 10.1007/s00526-015-0845-y. |
[8] |
G. Crippa and C. De Lellis, Estimates for transport equations and regularity of the DiPerna-Lions flow, J. Reine Angew. Math., 616 (2008), 15-46.
doi: 10.1515/CRELLE.2008.016. |
[9] |
B. Desjardins, A few remarks on ordinary differential equations, Comm. Partial Diff. Eq., 21 (1996), 1667-1703.
doi: 10.1080/03605309608821242. |
[10] |
R. J. DiPerna and P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., 98 (1989), 511-547.
doi: 10.1007/BF01393835. |
[11] |
F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math., 14 (1961), 415-426.
doi: 10.1002/cpa.3160140317. |
[12] |
P. B. Mucha, Transport equation: Extension of classical results for div $b \in BMO$, J. Differential Equations, 249 (2010), 1871-1883.
doi: 10.1016/j.jde.2010.07.015. |
show all references
References:
[1] |
L. Ambrosio, Transport equation and Cauchy problem for $BV$ vector fields, Invent. Math., 158 (2004), 227-260.
doi: 10.1007/s00222-004-0367-2. |
[2] |
L. Ambrosio and G. Crippa, Continuity equations and ODE flows with non-smooth velocity, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 1191-1244.
doi: 10.1017/S0308210513000085. |
[3] |
L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, $2^{nd}$ edition, Lectures in Mathematics, ETH Zurich, Birkhäuser, 2005. |
[4] |
L. Ambrosio, M. Lecumberry and S. Maniglia, Lipschitz regularity and approximate differentiability of the DiPerna-Lions flow, Rend. Sem. Mat. Univ. Padova, 114 (2005), 29-50. |
[5] |
F. Bouchut and G. Crippa, Lagrangian flows for vector fields with gradient given by a singular integral, J. Hyperbolic Differ. Equ., 10 (2013), 235-282.
doi: 10.1142/S0219891613500100. |
[6] |
A. Clop, R. Jiang, J. Mateu and J. Orobitg, Linear transport equations for vector fields with subexponentially integrable divergence, Calc. Var. Partial Differential Equations, 55 (2016), p21, arXiv:1502.05303
doi: 10.1007/s00526-016-0956-0. |
[7] |
M. Colombo, G. Crippa and S. Spirito, Renormalized solutions to the continuity equation with an integrable damping term, Calc. Var. PDE, 54 (2015), 1831-1845.
doi: 10.1007/s00526-015-0845-y. |
[8] |
G. Crippa and C. De Lellis, Estimates for transport equations and regularity of the DiPerna-Lions flow, J. Reine Angew. Math., 616 (2008), 15-46.
doi: 10.1515/CRELLE.2008.016. |
[9] |
B. Desjardins, A few remarks on ordinary differential equations, Comm. Partial Diff. Eq., 21 (1996), 1667-1703.
doi: 10.1080/03605309608821242. |
[10] |
R. J. DiPerna and P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., 98 (1989), 511-547.
doi: 10.1007/BF01393835. |
[11] |
F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math., 14 (1961), 415-426.
doi: 10.1002/cpa.3160140317. |
[12] |
P. B. Mucha, Transport equation: Extension of classical results for div $b \in BMO$, J. Differential Equations, 249 (2010), 1871-1883.
doi: 10.1016/j.jde.2010.07.015. |
[1] |
Abbes Benaissa, Abderrahmane Kasmi. Well-posedeness and energy decay of solutions to a bresse system with a boundary dissipation of fractional derivative type. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4361-4395. doi: 10.3934/dcdsb.2018168 |
[2] |
Daniel Coutand, J. Peirce, Steve Shkoller. Global well-posedness of weak solutions for the Lagrangian averaged Navier-Stokes equations on bounded domains. Communications on Pure and Applied Analysis, 2002, 1 (1) : 35-50. doi: 10.3934/cpaa.2002.1.35 |
[3] |
Zhigang Wang, Lei Wang, Yachun Li. Renormalized entropy solutions for degenerate parabolic-hyperbolic equations with time-space dependent coefficients. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1163-1182. doi: 10.3934/cpaa.2013.12.1163 |
[4] |
Niklas Sapountzoglou, Aleksandra Zimmermann. Well-posedness of renormalized solutions for a stochastic $ p $-Laplace equation with $ L^1 $-initial data. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2341-2376. doi: 10.3934/dcds.2020367 |
[5] |
José Antonio Carrillo, Marco Di Francesco, Antonio Esposito, Simone Fagioli, Markus Schmidtchen. Measure solutions to a system of continuity equations driven by Newtonian nonlocal interactions. Discrete and Continuous Dynamical Systems, 2020, 40 (2) : 1191-1231. doi: 10.3934/dcds.2020075 |
[6] |
Xinwei Yu, Zhichun Zhai. On the Lagrangian averaged Euler equations: local well-posedness and blow-up criterion. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1809-1823. doi: 10.3934/cpaa.2012.11.1809 |
[7] |
Hyung Ju Hwang, Hwijae Son. Lagrangian dual framework for conservative neural network solutions of kinetic equations. Kinetic and Related Models, 2022, 15 (4) : 551-568. doi: 10.3934/krm.2021046 |
[8] |
Qiang Liu, Zhichang Guo, Chunpeng Wang. Renormalized solutions to a reaction-diffusion system applied to image denoising. Discrete and Continuous Dynamical Systems - B, 2016, 21 (6) : 1839-1858. doi: 10.3934/dcdsb.2016025 |
[9] |
Niklas Sapountzoglou, Aleksandra Zimmermann. Renormalized solutions for stochastic $ p $-Laplace equations with $ L^1 $-initial data: The case of multiplicative noise. Discrete and Continuous Dynamical Systems, 2022, 42 (8) : 3979-4002. doi: 10.3934/dcds.2022041 |
[10] |
Yu Chen, Yanheng Ding, Tian Xu. Potential well and multiplicity of solutions for nonlinear Dirac equations. Communications on Pure and Applied Analysis, 2020, 19 (1) : 587-607. doi: 10.3934/cpaa.2020028 |
[11] |
Radu Saghin. On the number of ergodic minimizing measures for Lagrangian flows. Discrete and Continuous Dynamical Systems, 2007, 17 (3) : 501-507. doi: 10.3934/dcds.2007.17.501 |
[12] |
Shengquan Liu, Jianwen Zhang. Global well-posedness for the two-dimensional equations of nonhomogeneous incompressible liquid crystal flows with nonnegative density. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2631-2648. doi: 10.3934/dcdsb.2016065 |
[13] |
Guillaume Bal, Alexandre Jollivet. Boundary control for transport equations. Mathematical Control and Related Fields, 2022 doi: 10.3934/mcrf.2022014 |
[14] |
Mostafa Bendahmane, Kenneth H. Karlsen. Renormalized solutions of an anisotropic reaction-diffusion-advection system with $L^1$ data. Communications on Pure and Applied Analysis, 2006, 5 (4) : 733-762. doi: 10.3934/cpaa.2006.5.733 |
[15] |
Anouar Bahrouni, Marek Izydorek, Joanna Janczewska. Subharmonic solutions for a class of Lagrangian systems. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 1841-1850. doi: 10.3934/dcdss.2019121 |
[16] |
Youcef Amirat, Laurent Chupin, Rachid Touzani. Weak solutions to the equations of stationary magnetohydrodynamic flows in porous media. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2445-2464. doi: 10.3934/cpaa.2014.13.2445 |
[17] |
Hong Cai, Zhong Tan. Time periodic solutions to the three--dimensional equations of compressible magnetohydrodynamic flows. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 1847-1868. doi: 10.3934/dcds.2016.36.1847 |
[18] |
Jiawei Chen, Guangmin Wang, Xiaoqing Ou, Wenyan Zhang. Continuity of solutions mappings of parametric set optimization problems. Journal of Industrial and Management Optimization, 2020, 16 (1) : 25-36. doi: 10.3934/jimo.2018138 |
[19] |
Hantaek Bae, Rafael Granero-Belinchón, Omar Lazar. On the local and global existence of solutions to 1d transport equations with nonlocal velocity. Networks and Heterogeneous Media, 2019, 14 (3) : 471-487. doi: 10.3934/nhm.2019019 |
[20] |
Gianluca Crippa, Elizaveta Semenova, Stefano Spirito. Strong continuity for the 2D Euler equations. Kinetic and Related Models, 2015, 8 (4) : 685-689. doi: 10.3934/krm.2015.8.685 |
2020 Impact Factor: 1.213
Tools
Metrics
Other articles
by authors
[Back to Top]