June  2016, 11(2): 349-367. doi: 10.3934/nhm.2016.11.349

On a condition of strong precompactness and the decay of periodic entropy solutions to scalar conservation laws

1. 

Novgorod State University, 41 B. Sankt-Peterburgskaya, 173003 Veliky Novgorod, Russian Federation

Received  April 2015 Revised  June 2015 Published  March 2016

We propose a new sufficient non-degeneracy condition for the strong precompactness of bounded sequences satisfying the nonlinear first-order differential constraints. This result is applied to establish the decay property for periodic entropy solutions to multidimensional scalar conservation laws.
Citation: Evgeny Yu. Panov. On a condition of strong precompactness and the decay of periodic entropy solutions to scalar conservation laws. Networks and Heterogeneous Media, 2016, 11 (2) : 349-367. doi: 10.3934/nhm.2016.11.349
References:
[1]

A. S. Besicovitch, Almost Periodic Functions, Cambridge University Press, 1932.

[2]

G.-Q. Chen and H. Frid, Decay of entropy solutions of nonlinear conservation laws, Arch. Rational Mech. Anal., 146 (1999), 95-127. doi: 10.1007/s002050050138.

[3]

G.-Q. Chen and Y.-G. Lu, The study on application way of the compensated compactness theory, Chinese Sci. Bull., 34 (1989), 15-19.

[4]

C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, 3rd edition, Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-04048-1.

[5]

C. M. Dafermos, Long time behavior of periodic solutions to scalar conservation laws in several space dimensions, SIAM J. Math. Anal., 45 (2013), 2064-2070. doi: 10.1137/130909688.

[6]

R. J. DiPerna, Measure-valued solutions to conservation laws, Arch. Rational Mech. Anal., 88 (1985), 223-270. doi: 10.1007/BF00752112.

[7]

P. Gerárd, Microlocal defect measures, Comm. Partial Diff. Equat., 16 (1991), 1761-1794. doi: 10.1080/03605309108820822.

[8]

E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups, Providence, 1957.

[9]

S. N. Kruzhkov, First order quasilinear equations in several independent variables, Mat. Sb., 81 (1970), 228-255, English transl. in Math. USSR Sb., 10 (1970), 217-243.

[10]

S. N. Kruzhkov and E. Yu. Panov, First-order conservative quasilinear laws with an infinite domain of dependence on the initial data, Dokl. Akad. Nauk SSSR, 314 (1990), 79-84, English transl. in Soviet Math. Dokl., 42 (1991), 316-321.

[11]

S. N. Kruzhkov and E. Yu. Panov, Osgood's type conditions for uniqueness of entropy solutions to Cauchy problem for quasilinear conservation laws of the first order, Ann. Univ. Ferrara Sez. VII (N.S.), 40 (1994), 31-54.

[12]

S. Mishra and J. Jaffré, On the upstream mobility scheme for two-phase flow in porous media, Comp. GeoSci., 14 (2010), 105-124. doi: 10.1007/s10596-009-9135-0.

[13]

E. Yu. Panov, On sequences of measure-valued solutions of first-order quasilinear equations, Mat. Sb., 185 (1994), 87-106, English transl. in Russian Acad. Sci. Sb. Math., 81 (1995), 211-227. doi: 10.1070/SM1995v081n01ABEH003621.

[14]

E. Yu. Panov, Property of strong precompactness for bounded sets of measure valued solutions of a first-order quasilinear equation, Mat. Sb., 190 (1999), 109-128, English transl. in Russian Acad. Sci. Sb. Math., 190 (1999), 427-446. doi: 10.1070/SM1999v190n03ABEH000395.

[15]

E. Yu. Panov, A remark on the theory of generalized entropy sub- and supersolutions of the Cauchy problem for a first-order quasilinear equation, Differ. Uravn., 37 (2001), 252-259, English transl. in Differ. Equ., 37 (2001), 272-280. doi: 10.1023/A:1019273927768.

[16]

E. Yu. Panov, Existence of strong traces for generalized solutions of multidimensional scalar conservation laws, J. Hyperbolic Differ. Equ., 2 (2005), 885-908. doi: 10.1142/S0219891605000658.

[17]

E. Yu. Panov, Existence of strong traces for quasi-solutions of multidimensional conservation laws, J. Hyperbolic Differ. Equ., 4 (2007), 729-770. doi: 10.1142/S0219891607001343.

[18]

E. Yu. Panov, Existence and strong pre-compactness properties for entropy solutions of a first-order quasilinear equation with discontinuous flux, Arch. Rational Mech. Anal., 195 (2010), 643-673. doi: 10.1007/s00205-009-0217-x.

[19]

E. Yu. Panov, Ultra-parabolic equations with rough coefficients. Entropy solutions and strong precompactness property, J. Math. Sci., 159 (2009), 180-228. doi: 10.1007/s10958-009-9434-y.

[20]

E. Yu. Panov, On weak completeness of the set of entropy solutions to a scalar conservation law, SIAM J. Math. Anal., 41 (2009), 26-36. doi: 10.1137/080724587.

[21]

E. Yu. Panov, On decay of periodic entropy solutions to a scalar conservation law, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), 997-1007. doi: 10.1016/j.anihpc.2012.12.009.

[22]

E. Yu. Panov, On the Cauchy problem for scalar conservation laws in the class of Besicovitch almost periodic functions: Global well-posedness and decay property, preprint,, , (). 

[23]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, N.J., 1970.

[24]

L. Tartar, Compensated compactness and applications to partial differential equations, in Nonlinear analysis and mechanics, Heriot. Watt Symposium, vol. 4 (Edinburgh 1979), Res. Notes Math., 39 (1979), 136-212.

[25]

L. Tartar, H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations, Proc. Roy. Soc. Edinburgh. Sect. A., 115 (1990), 193-230. doi: 10.1017/S0308210500020606.

show all references

References:
[1]

A. S. Besicovitch, Almost Periodic Functions, Cambridge University Press, 1932.

[2]

G.-Q. Chen and H. Frid, Decay of entropy solutions of nonlinear conservation laws, Arch. Rational Mech. Anal., 146 (1999), 95-127. doi: 10.1007/s002050050138.

[3]

G.-Q. Chen and Y.-G. Lu, The study on application way of the compensated compactness theory, Chinese Sci. Bull., 34 (1989), 15-19.

[4]

C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, 3rd edition, Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-04048-1.

[5]

C. M. Dafermos, Long time behavior of periodic solutions to scalar conservation laws in several space dimensions, SIAM J. Math. Anal., 45 (2013), 2064-2070. doi: 10.1137/130909688.

[6]

R. J. DiPerna, Measure-valued solutions to conservation laws, Arch. Rational Mech. Anal., 88 (1985), 223-270. doi: 10.1007/BF00752112.

[7]

P. Gerárd, Microlocal defect measures, Comm. Partial Diff. Equat., 16 (1991), 1761-1794. doi: 10.1080/03605309108820822.

[8]

E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups, Providence, 1957.

[9]

S. N. Kruzhkov, First order quasilinear equations in several independent variables, Mat. Sb., 81 (1970), 228-255, English transl. in Math. USSR Sb., 10 (1970), 217-243.

[10]

S. N. Kruzhkov and E. Yu. Panov, First-order conservative quasilinear laws with an infinite domain of dependence on the initial data, Dokl. Akad. Nauk SSSR, 314 (1990), 79-84, English transl. in Soviet Math. Dokl., 42 (1991), 316-321.

[11]

S. N. Kruzhkov and E. Yu. Panov, Osgood's type conditions for uniqueness of entropy solutions to Cauchy problem for quasilinear conservation laws of the first order, Ann. Univ. Ferrara Sez. VII (N.S.), 40 (1994), 31-54.

[12]

S. Mishra and J. Jaffré, On the upstream mobility scheme for two-phase flow in porous media, Comp. GeoSci., 14 (2010), 105-124. doi: 10.1007/s10596-009-9135-0.

[13]

E. Yu. Panov, On sequences of measure-valued solutions of first-order quasilinear equations, Mat. Sb., 185 (1994), 87-106, English transl. in Russian Acad. Sci. Sb. Math., 81 (1995), 211-227. doi: 10.1070/SM1995v081n01ABEH003621.

[14]

E. Yu. Panov, Property of strong precompactness for bounded sets of measure valued solutions of a first-order quasilinear equation, Mat. Sb., 190 (1999), 109-128, English transl. in Russian Acad. Sci. Sb. Math., 190 (1999), 427-446. doi: 10.1070/SM1999v190n03ABEH000395.

[15]

E. Yu. Panov, A remark on the theory of generalized entropy sub- and supersolutions of the Cauchy problem for a first-order quasilinear equation, Differ. Uravn., 37 (2001), 252-259, English transl. in Differ. Equ., 37 (2001), 272-280. doi: 10.1023/A:1019273927768.

[16]

E. Yu. Panov, Existence of strong traces for generalized solutions of multidimensional scalar conservation laws, J. Hyperbolic Differ. Equ., 2 (2005), 885-908. doi: 10.1142/S0219891605000658.

[17]

E. Yu. Panov, Existence of strong traces for quasi-solutions of multidimensional conservation laws, J. Hyperbolic Differ. Equ., 4 (2007), 729-770. doi: 10.1142/S0219891607001343.

[18]

E. Yu. Panov, Existence and strong pre-compactness properties for entropy solutions of a first-order quasilinear equation with discontinuous flux, Arch. Rational Mech. Anal., 195 (2010), 643-673. doi: 10.1007/s00205-009-0217-x.

[19]

E. Yu. Panov, Ultra-parabolic equations with rough coefficients. Entropy solutions and strong precompactness property, J. Math. Sci., 159 (2009), 180-228. doi: 10.1007/s10958-009-9434-y.

[20]

E. Yu. Panov, On weak completeness of the set of entropy solutions to a scalar conservation law, SIAM J. Math. Anal., 41 (2009), 26-36. doi: 10.1137/080724587.

[21]

E. Yu. Panov, On decay of periodic entropy solutions to a scalar conservation law, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), 997-1007. doi: 10.1016/j.anihpc.2012.12.009.

[22]

E. Yu. Panov, On the Cauchy problem for scalar conservation laws in the class of Besicovitch almost periodic functions: Global well-posedness and decay property, preprint,, , (). 

[23]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, N.J., 1970.

[24]

L. Tartar, Compensated compactness and applications to partial differential equations, in Nonlinear analysis and mechanics, Heriot. Watt Symposium, vol. 4 (Edinburgh 1979), Res. Notes Math., 39 (1979), 136-212.

[25]

L. Tartar, H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations, Proc. Roy. Soc. Edinburgh. Sect. A., 115 (1990), 193-230. doi: 10.1017/S0308210500020606.

[1]

Luc Tartar. Multi-scales H-measures. Discrete and Continuous Dynamical Systems - S, 2015, 8 (1) : 77-90. doi: 10.3934/dcdss.2015.8.77

[2]

Darko Mitrovic, Ivan Ivec. A generalization of $H$-measures and application on purely fractional scalar conservation laws. Communications on Pure and Applied Analysis, 2011, 10 (6) : 1617-1627. doi: 10.3934/cpaa.2011.10.1617

[3]

Young-Sam Kwon. On the well-posedness of entropy solutions for conservation laws with source terms. Discrete and Continuous Dynamical Systems, 2009, 25 (3) : 933-949. doi: 10.3934/dcds.2009.25.933

[4]

Fengbai Li, Feng Rong. Decay of solutions to fractal parabolic conservation laws with large initial data. Communications on Pure and Applied Analysis, 2013, 12 (2) : 973-984. doi: 10.3934/cpaa.2013.12.973

[5]

Stefano Bianchini, Elio Marconi. On the concentration of entropy for scalar conservation laws. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 73-88. doi: 10.3934/dcdss.2016.9.73

[6]

Eitan Tadmor. Perfect derivatives, conservative differences and entropy stable computation of hyperbolic conservation laws. Discrete and Continuous Dynamical Systems, 2016, 36 (8) : 4579-4598. doi: 10.3934/dcds.2016.36.4579

[7]

Darko Mitrovic. New entropy conditions for scalar conservation laws with discontinuous flux. Discrete and Continuous Dynamical Systems, 2011, 30 (4) : 1191-1210. doi: 10.3934/dcds.2011.30.1191

[8]

Gui-Qiang Chen, Monica Torres. On the structure of solutions of nonlinear hyperbolic systems of conservation laws. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1011-1036. doi: 10.3934/cpaa.2011.10.1011

[9]

C. M. Khalique, G. S. Pai. Conservation laws and invariant solutions for soil water equations. Conference Publications, 2003, 2003 (Special) : 477-481. doi: 10.3934/proc.2003.2003.477

[10]

Boris P. Andreianov, Giuseppe Maria Coclite, Carlotta Donadello. Well-posedness for vanishing viscosity solutions of scalar conservation laws on a network. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5913-5942. doi: 10.3934/dcds.2017257

[11]

Shijin Deng, Weike Wang. Pointwise estimates of solutions for the multi-dimensional scalar conservation laws with relaxation. Discrete and Continuous Dynamical Systems, 2011, 30 (4) : 1107-1138. doi: 10.3934/dcds.2011.30.1107

[12]

Lijuan Wang, Weike Wang. Pointwise estimates of solutions to conservation laws with nonlocal dissipation-type terms. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2835-2854. doi: 10.3934/cpaa.2019127

[13]

Stephen C. Anco, Maria Luz Gandarias, Elena Recio. Conservation laws and line soliton solutions of a family of modified KP equations. Discrete and Continuous Dynamical Systems - S, 2020, 13 (10) : 2655-2665. doi: 10.3934/dcdss.2020225

[14]

Avner Friedman. Conservation laws in mathematical biology. Discrete and Continuous Dynamical Systems, 2012, 32 (9) : 3081-3097. doi: 10.3934/dcds.2012.32.3081

[15]

Mauro Garavello. A review of conservation laws on networks. Networks and Heterogeneous Media, 2010, 5 (3) : 565-581. doi: 10.3934/nhm.2010.5.565

[16]

Len G. Margolin, Roy S. Baty. Conservation laws in discrete geometry. Journal of Geometric Mechanics, 2019, 11 (2) : 187-203. doi: 10.3934/jgm.2019010

[17]

Mauro Garavello, Roberto Natalini, Benedetto Piccoli, Andrea Terracina. Conservation laws with discontinuous flux. Networks and Heterogeneous Media, 2007, 2 (1) : 159-179. doi: 10.3934/nhm.2007.2.159

[18]

Shikuan Mao, Yongqin Liu. Decay property for solutions to plate type equations with variable coefficients. Kinetic and Related Models, 2017, 10 (3) : 785-797. doi: 10.3934/krm.2017031

[19]

Jian Zhang, Wen Zhang. Existence and decay property of ground state solutions for Hamiltonian elliptic system. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2433-2455. doi: 10.3934/cpaa.2019110

[20]

Jian Li. Localization of mixing property via Furstenberg families. Discrete and Continuous Dynamical Systems, 2015, 35 (2) : 725-740. doi: 10.3934/dcds.2015.35.725

2020 Impact Factor: 1.213

Metrics

  • PDF downloads (54)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]