Advanced Search
Article Contents
Article Contents

A steady-state mathematical model for an EOS capacitor: The effect of the size exclusion

Abstract Related Papers Cited by
  • In this paper we present a suitable mathematical model to describe the behaviour of a hybrid electrolyte-oxide-semiconductor (EOS) device, that could be considered for application to neuro-prothesis and bio-devices. In particular, we discuss the existence and uniqueness of solutions also including the effects of the size exclusion in narrow structures such as ionic channels or nanopores. The result is proved using a fixed point argument on the whole domain.
        Our results provide information about the charge distribution and the potential behaviour on the device domain, and can represent a suitable framework for the development of stable numerical tools for innovative nanodevice modelling.
    Mathematics Subject Classification: Primary: 34B15, 58D30; Secondary: 82D37.


    \begin{equation} \\ \end{equation}
  • [1]

    U. Ascher, J. Christiansen and R. D. Russell, Collocation software for boundary-value ODEs, ACM Transactions on Mathematical Software (TOMS), 7 (1981), 209-222.doi: 10.1145/355945.355950.


    J. N. Y. Aziz, R. Genov, B. L. Bardakjian, M. Derchansky and P. L. Carlen, Brain-silicon interface for high-resolution in vitro neural recording, IEEE Transactions on Biomedical Circuits and Systems, 1 (2007), 56-62.


    G. Bader and U. Ascher, A new basis implementation for a mixed order boundary value ODE solver, SIAM J. Sci. Stat. Comput., 8 (1987), 483-500.doi: 10.1137/0908047.


    R. Baronas, F. Ivanauskas and J. Kulys, Mathematical Modeling of Biosensors: An Introduction for Chemists and Mathematicians, Springer Science & Business Media, 2010.doi: 10.1007/978-90-481-3243-0_5.


    S. Baumgartner and C. Heitzinger, Existence and local uniqueness for 3d self-consistent multiscale models of field-effect sensors, Commun. Math. Sci, 10 (2012), 693-716.doi: 10.4310/CMS.2012.v10.n2.a13.


    M. Bayer, C. Uhl and P. Vogl, Theoretical study of electrolyte gate AlGaN/GaN field effect transistors, Journal of Applied Physics, 97 (2005), 033703.doi: 10.1063/1.1847730.


    S. Birner, Modeling of semiconductor nanostructures and semiconductor-electrolyte interfaces, Ph.D thesis, TU München, 2011.


    S. Birner, S. Hackenbuchner, M. Sabathil, G. Zandler, J.A. Majewski, T. Andlauer, T. Zibold, R. Morschl, A. Trellakis and P. Vogl, Modeling of Semiconductor Nanostructures with nextnano3, Acta Physica Polonica A, 110 (2006), 111-124.doi: 10.12693/APhysPolA.110.111.


    S. Birner, C. Uhl, M. Bayer and P. Vogl, Theoretical model for the detection of charged proteins with a silicon-on-insulator sensor, Journal of Physics: Conference Series, 107 (2008), 012002.doi: 10.1088/1742-6596/107/1/012002.


    M. Burger, R. S. Eisenberg and H. W. Engl, Inverse problems related to ion channel selectivity, SIAM Journal on Applied Mathematics, 67 (2007), 960-989.doi: 10.1137/060664689.


    M. Burger, B. Schlake and M.-T. Wolfram, Nonlinear Poisson-Nernst-Planck equations for ion flux through confined geometries, Nonlinearity, 25 (2012), 961-990.doi: 10.1088/0951-7715/25/4/961.


    E. Cianci, S. Lattanzio, G. Seguini, S. Vassanelli and M. Fanciulli, Atomic layer deposited $TiO_2$ for implantable brain-chip interfacing devices, Thin Solid Films, 520 (2012), 4745-4748.


    C. De Falco, E. Gatti, A. L. Lacaita and R. Sacco, Quantum-corrected drift-diffusion models for transport in semiconductor devices, Journal of Computational Physics, 204 (2005), 533-561.doi: 10.1016/j.jcp.2004.10.029.


    W. Dreyer, C. Guhlke and R. Müller, Overcoming the shortcomings of the Nernst-Planck model, Physical Chemistry Chemical Physics, 15 (2013), 7075-7086.doi: 10.1039/c3cp44390f.


    P. Fromherz, Semiconductor chips with ion channels, nerve cells and brain, Physica E: Low-dimensional Systems and Nanostructures, 16 (2003), 24-34.doi: 10.1016/S1386-9477(02)00578-7.


    P. Fromherz, Three levels of neuroelectronic interfacing, Annals of the New York Academy of Sciences, 1093 (2006),143-160.


    P. Fromherz, Joining microelectronics and microionics: Nerve cells and brain tissue on semiconductor chips, Solid-State Electronics, 52 (2008), 1364-1373.


    I. Gasser and A. Jüngel, The quantum hydrodynamic model for semiconductors in thermal equilibrium, Zeitschrift für Angewandte Mathematik und Physik (ZAMP), 48 (1997), 45-59.doi: 10.1007/PL00001469.


    D. Gillespie, W. Nonner and R. S. Eisenberg, Coupling Poisson-Nernst-Planck and density functional theory to calculate ion flux, Journal of Physics: Condensed Matter, 14 (2002), 12129-12145.doi: 10.1088/0953-8984/14/46/317.


    W. M. Grill, S. E. Norman and R. V. Bellamkonda, Implanted neural interfaces: Biochallenges and engineered solutions, Annual Review of Biomedical Engineering, 11 (2009), 1-24.doi: 10.1146/annurev-bioeng-061008-124927.


    Y. He, I. Gamba, H.-C. Lee and K. Ren, On the modeling and simulation of reaction-transfer dynamics in semiconductor-electrolyte solar cells, SIAM Journal on Applied Mathematics, 75 (2015), 2515-2539.doi: 10.1137/130935148.


    C. Heitzinger, R. Kennell, G. Klimeck, N. Mauser, M. McLennan and C. Ringhofer, Modeling and simulation of field-effect biosensors (BioFETs) and their deployment on the nanoHUB, Journal of Physics: Conference Series, 107 (2008), 012004.doi: 10.1088/1742-6596/107/1/012004.


    C. Heitzinger and G. Klimeck, Computational aspects of the three-dimensional feature-scale simulation of silicon-nanowire field-effect sensors for DNA detection, Journal of Computational Electronics, 6 (2007), 387-390.doi: 10.1007/s10825-006-0139-x.


    C. Heitzinger, N. J. Mauser and C. Ringhofer, Multiscale modeling of planar and nanowire field-effect biosensors, SIAM Journal on Applied Mathematics, 70 (2010), 1634-1654.doi: 10.1137/080725027.


    A. Jüngel and I. V. Stelzer, Existence Analysis of Maxwell-Stefan Systems for Multicomponent Mixtures, SIAM Journal on Mathematical Analysis, 45 (2013), 2421-2440.doi: 10.1137/120898164.


    P. A. Markowich, The Stationary Semiconductor Device Equations, Springer Science & Business Media, 1986.doi: 10.1007/978-3-7091-3678-2.


    P. A. Markowich, C. Ringhofer and C. Schmeiser, Semiconductor Equations, Springer-Verlag: Berlin, Heidelberg, New York, 1990.doi: 10.1007/978-3-7091-6961-2.


    M. Mojarradi, D. Binkley, B. Blalock, R. Andersen, N. Ulshoefer, T. Johnson and L. Del Castillo, A miniaturized neuroprosthesis suitable for implantation into the brain, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 11 (2003), 38-42.doi: 10.1109/TNSRE.2003.810431.


    X. Navarro, T.B Krueger, N. Lago, S. Micera, T. Stieglitz and P. Dario, A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems, Journal of the Peripheral Nervous System, 10 (2005), 229-258.doi: 10.1111/j.1085-9489.2005.10303.x.


    Y. Ohno, K. Maehashi, Y. Yamashiro and K. Matsumoto, Electrolyte-gated graphene field-effect transistors for detecting pH and protein adsorption, Nano Letters, 9 (2009), 3318-3322.doi: 10.1021/nl901596m.


    W. R. Patterson, Y. Song, C. W. Bull, I. Ozden, A. P. Deangellis, C. Lay, J. L. McKay, A. V. Nurmikko, J. D. Donoghue and B. W. Connors, A microelectrode/microelectronic hybrid device for brain implantable neuroprosthesis applications, IEEE Transactions on Biomedical Engineering, 51 (2004), 1845-1853.doi: 10.1109/TBME.2004.831521.


    I. Peitz and P. Fromherz, Electrical interfacing of neurotransmitter receptor and field effect transistor, The European Physical Journal E: Soft Matter and Biological Physics, 30 (2009), 223-231.doi: 10.1140/epje/i2009-10461-3.


    R. Popovtzer, A. Natan and Y. Shacham-Diamand, Mathematical model of whole cell based bio-chip: An electrochemical biosensor for water toxicity detection, Journal of Electroanalytical Chemistry, 602 (2007), 17-23.doi: 10.1016/j.jelechem.2006.11.022.


    M.J. Schöning and A. Poghossian, Bio FEDs (Field-Effect Devices): State-of-the-Art and New Directions, Electroanalysis, 18, (2006), 1893-1900.


    W. M. Siu and R. S. C. Cobbold, Basic properties of the electrolyte-SiO2-Si system: Physical and theoretical aspects, IEEE Transactions on Electron Devices, 26 (1979), 1805-1815.


    A. Stett, B. Muller and P. Fromherz, Two-way silicon-neuron interface by electrical induction, Physical Review E, 55 (1997), 1779-1782.doi: 10.1103/PhysRevE.55.1779.


    T. Tokuda, Y. L. Pan, A. Uehara, K. Kagawa, M. Nunoshita and J. Ohta, Flexible and extendible neural interface device based on cooperative multi-chip CMOS LSI architecture, Sensors and Actuators A: Physical, 122 (2005), 88-98.doi: 10.1016/j.sna.2005.03.065.


    R. E. G. van Hal, J. C. T. Eijkel and P. Bergveld, A general model to describe the electrostatic potential at electrolyte oxide interfaces, Advances in Colloid and Interface Science, 69 (1996), 31-62.


    M. W. Shinwari, M. J. Deen and D. Landheer, Study of the electrolyte-insulator-semiconductor field-effect transistor (EISFET) with applications in biosensor design, Microelectronics Reliability, 47 (2007), 2025-2057.

  • 加载中

Article Metrics

HTML views() PDF downloads(225) Cited by(0)

Access History



    DownLoad:  Full-Size Img  PowerPoint