\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Hydrodynamic limit for a Fokker-Planck equation with coefficients in Sobolev spaces

Abstract Full Text(HTML) Related Papers Cited by
  • In this paper we study the hydrodynamic (small mass approximation) limit of a Fokker-Planck equation. This equation arises in the kinetic description of the evolution of a particle system immersed in a viscous Stokes flow. We discuss two different methods of hydrodynamic convergence. The first method works with initial data in a weighted L2 space and uses weak convergence and the extraction of convergent subsequences. The second uses entropic initial data and gives an L1 convergence to the solution of the limit problem via the study of the relative entropy.

    Mathematics Subject Classification: Primary: 35Q70, 35Q84; Secondary: 35Q35.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] C. BardosF. GolseB. Perthame and R. Sentis, The nonaccretive radiative transfer equations: Existence of solutions and Rosseland approximation, J. Funct. Anal., 77 (1988), 434-460.  doi: 10.1016/0022-1236(88)90096-1.
    [2] B. BirdR. ArmstrongC. Curtiss and  O. HassagerDynamics of Polymeric Liquids: Kinetic Theory, vol 2, 2nd edition, John Wiley & Sons, 1994. 
    [3] B. CichockiB. U. FelderhofK. HinsenE. Wajnryb and J. Blawzdziewicz, Friction and mobility of many spheres in Stokes flow, J. Chem. Phys., 100 (1994), 3780-3790.  doi: 10.1063/1.466366.
    [4] I. Csiszár, Information-type measures of difference of probability distributions and indirect observations, Stud. Sci. Math. Hung., 2 (1967), 299-318. 
    [5] P. DegondT. Goudon and F. Poupaud, Diffusion limit for nonhomogeneous and non-micro-reversible processes, Indiana Univ. Math. J., 49 (2000), 1175-1198. 
    [6] P. Degond and H. Liu, Kinetic models for polymers with inertial effects, Netw. Heterog. Media, 4 (2009), 625-647.  doi: 10.3934/nhm.2009.4.625.
    [7] M. DoiIntroduction to Polymer Physics, Oxford University Press, 1996. 
    [8] M. Doi and  S. F. EdwardsThe Theory of Polymer Dynamics, Oxford University Press, New York, 1986. 
    [9] J. DolbeaultP. A. MarkowichD. Oelz and C. Schmeiser, Non linear diffusions as limit of kinetic equations with relaxation collision kernels, Arch. Ration. Mech. Anal., 186 (2007), 133-158.  doi: 10.1007/s00205-007-0049-5.
    [10] A. Einstein, Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen, Ann. Phys., 322 (1905), 549-560.  doi: 10.1002/andp.19053220806.
    [11] M. Freidlin, Some remarks on the Smoluchowski-Kramers approximation, J. Stat. Phys., 117 (2004), 617-634.  doi: 10.1007/s10955-004-2273-9.
    [12] N. Ghani and N. Masmoudi, Diffusion limit of The Vlassov-Poisson-Fokker-Planck system, Commun. Math. Sci., 8 (2010), 463-479.  doi: 10.4310/CMS.2010.v8.n2.a9.
    [13] F. Golse, C. D. Levermore and L. Saint-Raymond, La Méthode de L'entropie Relative Pour les Limites Hydrodynamiques de Modéles Cinétiques Séminaire Equations aux Derivées Partielles, Exp. No. XIX, Ecole Polytechnique, 2000.
    [14] F. Golse and F. Poupaud, Limite fluide des équations de Boltzmann des semi-conducteurs pour une statistique de Fermi-Dirac, Asympot. Anal., 6 (1992), 135-160. 
    [15] T. Goudon, Hydrodynamic limit for the Vlasov-Poisson-Fokker-Planck system: Analysis of the two-dimensional case, Math. Models Methods Appl. Sci., 15 (2005), 737-752.  doi: 10.1142/S021820250500056X.
    [16] T. GoudonP.-E. Jabin and A. Vasseur, Hydrodynamic limit for the Vlasov-Navier-Stokes equation. Part Ⅰ: Light particles regime, Indiana Univ. Math. J., 53 (2004), 1495-1515.  doi: 10.1512/iumj.2004.53.2508.
    [17] T. GoudonP.-E. Jabin and A. Vasseur, Hydrodynamic limit for the Vlasov-Navier-Stokes equation. Part Ⅱ: Fine particles regime, Indiana Univ. Math. J., 53 (2004), 1517-1536.  doi: 10.1512/iumj.2004.53.2509.
    [18] P. -E. Jabin, private communication.
    [19] P.-E. Jabin and F. Otto, Identification of the dilute regime in particle sedimentation, Comm. Math. Phys., 250 (2004), 415-432.  doi: 10.1007/s00220-004-1126-3.
    [20] P. -E. Jabin and B. Perthame, Notes on mathematical problems on the dynamics of dispersed particles interacting through a fluid, in Modeling in Applied Sciences, a Kinetic Theory Approach (eds. N. Bellomo and M. Pulvirenti), Birkhäuser, (2000), 111-147.
    [21] G. Jannick and  J. des CloizeauxPolymers in Solution: Their Modelling and Structure, Oxford University Press, 1990. 
    [22] D. Jeffrey and Y. Onishi, Calculation of the resistance and mobility functions for two unequal rigid spheres in low-Reynolds-number flow, J. Fluid Mech., 139 (1984), 261-290.  doi: 10.1017/S0022112084000355.
    [23] G. Kim and  S. J. KarrilaMicrohydrodynamics: Principles and Selected Applications, Butterworth-Heinemann, Boston, 1991. 
    [24] J. G. Kirkwood, John Gamble Kirkwood Collected Works: Macromolecules, vol 3, Documents on modern physics, Gordon and Breach, 1967.
    [25] S. Kullback, A lower bound for discrimination information in terms of variation, IEEE Trans. Inform. Theory, 13 (1967), 126-127. 
    [26] C. Le Bris and P.-L. Lions, Renormalized solutions of some transport equations with partially $W^{1, 1}$ velocities and applications, Ann. Mat. Pura Appl., 183 (2004), 97-130.  doi: 10.1007/s10231-003-0082-4.
    [27] C. Le Bris and P.-L. Lions, Existence and uniqueness of solutions to Fokker-Planck type equations with irregular coefficients, Comm. Partial Differential Equations, 33 (2008), 1272-1317.  doi: 10.1080/03605300801970952.
    [28] M. PinskerInformation and Information Stability of Random Variables and Processes, Holden-Day, San Francisco, 1964. 
    [29] F. Poupaud, Diffusion approximation of the linear semiconductor Boltzmann equation: analysis of boundary layers, Asympot. Anal., 4 (1991), 293-317. 
    [30] F. Poupaud and C. Schmeiser, Charge transport in semiconductors with degeneracy effects, Math. Methods Appl. Sci., 14 (1991), 301-318.  doi: 10.1002/mma.1670140503.
    [31] M. Reichert, Hydrodynamic Interactions in Colloidal and Biological Systems, Ph. D thesis, University Konstanz, 2006.
    [32] H. Risken, The Fokker-Planck Equation. Methods of Solution and Applications, in Springer Series in Synergetics, 18 2nd edition, Berlin, 1989. doi: 10.1007/978-3-642-61544-3.
    [33] J. Rotne and S. Prager, Variational treatment of hydrodynamic iteractions in polymers, J. Chem. Phys., 50 (1969), 4831-4837. 
    [34] S. Varadhan, Entropy methods in hydrodynamic scaling, Proceedings of the International Congress of Mathematicians, Birkhäuser, Basel, 1 (1995), 196-208
    [35] M. von Smoluchowski, Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen, Ann. Phys., 326 (1906), 756-780.  doi: 10.1002/andp.19063261405.
    [36] H. Yamakawa, Transport properties of polymer chains in dilute solutions: Hydrodynamic interactions, J. Chem. Phys., 53 (1970), 436-443.  doi: 10.1063/1.1673799.
    [37] H. T. Yau, Relative entropy and hydrodynamics of Ginzburg-Landau models, Lett. Math. Phys., 22 (1991), 63-80.  doi: 10.1007/BF00400379.
  • 加载中
SHARE

Article Metrics

HTML views(609) PDF downloads(169) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return