
-
Previous Article
On a vorticity-based formulation for reaction-diffusion-Brinkman systems
- NHM Home
- This Issue
-
Next Article
Stochastic homogenization of maximal monotone relations and applications
Stationary solutions and asymptotic behaviour for a chemotaxis hyperbolic model on a network
Dipartimento di Ingegneria e Scienze dell'Informazione e Matematica, Universitá degli Studi di L'Aquila, Via Vetoio, I-67100 Coppito (L'Aquila), Italy |
This paper approaches the question of existence and uniqueness of stationary solutions to a semilinear hyperbolic-parabolic system and the study of the asymptotic behaviour of global solutions. The system is a model for some biological phenomena evolving on a network composed by a finite number of nodes and oriented arcs. The transmission conditions for the unknowns, set at each inner node, are crucial features of the model.
References:
[1] |
W. Alt and J. M. Greemberg,
Stability results for a diffusion equation with functional drift approximating a chemotaxis model, Trans. Amer. Math. Soc., 300 (1987), 235-258.
doi: 10.1090/S0002-9947-1987-0871674-4. |
[2] |
R. Borsche, S. Gottlich, A. Klar and P. Schillen,
The scalar Keller-Segel model on networks, Math. Models Methods Appl. Sci., 24 (2014), 221-247.
doi: 10.1142/S0218202513400071. |
[3] |
G. Bretti, R. Natalini and M. Ribot,
A hyperbolic model of chemotaxis on a network: A numerical study, ESAIM: Mathematical Modelling and Numerical Analysis, 48 (2014), 231-258.
doi: 10.1051/m2an/2013098. |
[4] |
T. Cazenave and A. Haraux,
An Introduction to Semilinear Evolution Equations, Clarendon Press-Oxford, 1998. |
[5] |
G. M. Coclite, M. Garavello and B. Piccoli,
Traffic flow on a road network, SIAM J. Math. Anal., 36 (2005), 1862-1886.
doi: 10.1137/S0036141004402683. |
[6] |
L. Corrias and F. Camilli,
Parabolic models for chemotaxis on weighted nerworks, J. Math. Pures Appl., 108 (2017), 459-480.
doi: 10.1016/j.matpur.2017.07.003. |
[7] |
R. Dager and E. Zuazua,
Wave Propagation, Observation and Control in 1-d Flexible Multi-Structures, Vol. 50 of Mathematiques & Applications [Mathematics & Applications] Springer-Verlag, Berlin, 2006. |
[8] |
Y. Dolak and T. Hillen,
Cattaneo models for chemosensitive movement. Numerical solution and pattern formation, J. Math. Biol., 46 (2003), 153-170.
doi: 10.1007/s00285-002-0173-7. |
[9] |
F. Filbet, P. Laurencot and B. Pertame,
Derivation of hyperbolic model for chemosensitive movement, J. Math. Biol., 50 (2005), 189-207.
doi: 10.1007/s00285-004-0286-2. |
[10] |
M. Garavello and B. Piccoli,
Traffic Flow on Networks -Conservation Laws Models, AIMS Series on Applied Mathematics, Vol. 1, American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2006. |
[11] |
F. R. Guarguaglini, C. Mascia, R. Natalini and M. Ribot,
Stability of constant states and qualitative behavior of solutions to a one dimensional hyperbolic model of chemotaxis, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009), 39-76.
doi: 10.3934/dcdsb.2009.12.39. |
[12] |
F. R. Guarguaglini and R. Natalini,
Global smooth solutions for a hyperbolic chemotaxis model on a network, SIAM J. Math. Anal., 47 (2015), 4652-4671.
doi: 10.1137/140997099. |
[13] |
B. A. C. Harley, H. Kim, M. H. Zaman, I. V. Yannas, D. A. Lauffenburger and L. J. Gibson,
Microarchitecture of three-dimensional scaffold influences cell migration behavior via junction interaction, Biophysical Journal, 29 (2008), 4013-4024.
|
[14] |
T. Hillen,
Hyperbolic models for chemosensitive mevement, Math. Models Methods Appl. Sci., 12 (2002), 1007-1034.
doi: 10.1142/S0218202502002008. |
[15] |
T. Hillen, C. Rhode and F. Lutscher,
Existence of weak solutions for a hyperbolic model of chemosensitive movement, J. Math. Anal. Appl., 260 (2001), 173-199.
doi: 10.1006/jmaa.2001.7447. |
[16] |
T. Hillen and A. Stevens,
Hyperbolic model for chemotaxis in 1-D, Nonlinear Anal. Real World Appl., 1 (2000), 409-433.
doi: 10.1016/S0362-546X(99)00284-9. |
[17] |
D. Horstmann,
From 1970 until present: The Keller-Segel model in chemotaxis and its consequences, I.Jahresber.Deutsch Math-Verein, 105 (2003), 103-165.
|
[18] |
E. F. Keller and L. A. Segel,
Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415.
|
[19] |
M. Kramar and E. Sikolya,
Spectral properties and asymptotic periodicity of flows in networks, Mathematische Zeitschrift, 249 (2005), 139-162.
doi: 10.1007/s00209-004-0695-3. |
[20] |
B. B. Mandal and S. C. Kundu,
Cell proliferation and migration in silk broin 3D scaffolds, Biomaterials, 30 (2009), 2956-2965.
|
[21] |
D. Mugnolo,
Simigroup Methods for Evolutions Equations on Networks, Springer, Berlin, 2014. |
[22] |
J. D. Murray,
Mathematical Biology. I An Introduction, Third edition. Interdisciplinary Applied Mathematics, 17 Springer Verlag, New York, 2002; Mathematical Biology. Ⅱ Spatial models and biomedical applications, Third edition. Interdisciplinary Applied Mathematics, 18 Springer Verlag, New York, 2003. |
[23] |
B. Perthame,
Transport Equations in Biology, Frontiers in Mathematics, Birkhauser, 2007. |
[24] |
L. A. Segel,
A theoretical study of receptor mechanisms in bacterial chemotaxis, SIAM J.Appl.Math., 32 (1977), 653-665.
|
[25] |
C. Spadaccio, A. Rainer, S. De Porcellinis, M. Centola, F. De Marco, M. Chello, M. Trombetta and J. A. Genovese,
A G-CSF functionalized PLLA scaffold for wound repair: An in vitro preliminary study, Conf. Proc. IEEE Eng.Med.Biol.Soc., (2010), 843-846.
|
[26] |
J. Valein and E. Zuazua,
Stabilization of the wave equation on 1-D networks, SIAM J. Control Optim., 48 (2009), 2771-2797.
doi: 10.1137/080733590. |
show all references
References:
[1] |
W. Alt and J. M. Greemberg,
Stability results for a diffusion equation with functional drift approximating a chemotaxis model, Trans. Amer. Math. Soc., 300 (1987), 235-258.
doi: 10.1090/S0002-9947-1987-0871674-4. |
[2] |
R. Borsche, S. Gottlich, A. Klar and P. Schillen,
The scalar Keller-Segel model on networks, Math. Models Methods Appl. Sci., 24 (2014), 221-247.
doi: 10.1142/S0218202513400071. |
[3] |
G. Bretti, R. Natalini and M. Ribot,
A hyperbolic model of chemotaxis on a network: A numerical study, ESAIM: Mathematical Modelling and Numerical Analysis, 48 (2014), 231-258.
doi: 10.1051/m2an/2013098. |
[4] |
T. Cazenave and A. Haraux,
An Introduction to Semilinear Evolution Equations, Clarendon Press-Oxford, 1998. |
[5] |
G. M. Coclite, M. Garavello and B. Piccoli,
Traffic flow on a road network, SIAM J. Math. Anal., 36 (2005), 1862-1886.
doi: 10.1137/S0036141004402683. |
[6] |
L. Corrias and F. Camilli,
Parabolic models for chemotaxis on weighted nerworks, J. Math. Pures Appl., 108 (2017), 459-480.
doi: 10.1016/j.matpur.2017.07.003. |
[7] |
R. Dager and E. Zuazua,
Wave Propagation, Observation and Control in 1-d Flexible Multi-Structures, Vol. 50 of Mathematiques & Applications [Mathematics & Applications] Springer-Verlag, Berlin, 2006. |
[8] |
Y. Dolak and T. Hillen,
Cattaneo models for chemosensitive movement. Numerical solution and pattern formation, J. Math. Biol., 46 (2003), 153-170.
doi: 10.1007/s00285-002-0173-7. |
[9] |
F. Filbet, P. Laurencot and B. Pertame,
Derivation of hyperbolic model for chemosensitive movement, J. Math. Biol., 50 (2005), 189-207.
doi: 10.1007/s00285-004-0286-2. |
[10] |
M. Garavello and B. Piccoli,
Traffic Flow on Networks -Conservation Laws Models, AIMS Series on Applied Mathematics, Vol. 1, American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2006. |
[11] |
F. R. Guarguaglini, C. Mascia, R. Natalini and M. Ribot,
Stability of constant states and qualitative behavior of solutions to a one dimensional hyperbolic model of chemotaxis, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009), 39-76.
doi: 10.3934/dcdsb.2009.12.39. |
[12] |
F. R. Guarguaglini and R. Natalini,
Global smooth solutions for a hyperbolic chemotaxis model on a network, SIAM J. Math. Anal., 47 (2015), 4652-4671.
doi: 10.1137/140997099. |
[13] |
B. A. C. Harley, H. Kim, M. H. Zaman, I. V. Yannas, D. A. Lauffenburger and L. J. Gibson,
Microarchitecture of three-dimensional scaffold influences cell migration behavior via junction interaction, Biophysical Journal, 29 (2008), 4013-4024.
|
[14] |
T. Hillen,
Hyperbolic models for chemosensitive mevement, Math. Models Methods Appl. Sci., 12 (2002), 1007-1034.
doi: 10.1142/S0218202502002008. |
[15] |
T. Hillen, C. Rhode and F. Lutscher,
Existence of weak solutions for a hyperbolic model of chemosensitive movement, J. Math. Anal. Appl., 260 (2001), 173-199.
doi: 10.1006/jmaa.2001.7447. |
[16] |
T. Hillen and A. Stevens,
Hyperbolic model for chemotaxis in 1-D, Nonlinear Anal. Real World Appl., 1 (2000), 409-433.
doi: 10.1016/S0362-546X(99)00284-9. |
[17] |
D. Horstmann,
From 1970 until present: The Keller-Segel model in chemotaxis and its consequences, I.Jahresber.Deutsch Math-Verein, 105 (2003), 103-165.
|
[18] |
E. F. Keller and L. A. Segel,
Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415.
|
[19] |
M. Kramar and E. Sikolya,
Spectral properties and asymptotic periodicity of flows in networks, Mathematische Zeitschrift, 249 (2005), 139-162.
doi: 10.1007/s00209-004-0695-3. |
[20] |
B. B. Mandal and S. C. Kundu,
Cell proliferation and migration in silk broin 3D scaffolds, Biomaterials, 30 (2009), 2956-2965.
|
[21] |
D. Mugnolo,
Simigroup Methods for Evolutions Equations on Networks, Springer, Berlin, 2014. |
[22] |
J. D. Murray,
Mathematical Biology. I An Introduction, Third edition. Interdisciplinary Applied Mathematics, 17 Springer Verlag, New York, 2002; Mathematical Biology. Ⅱ Spatial models and biomedical applications, Third edition. Interdisciplinary Applied Mathematics, 18 Springer Verlag, New York, 2003. |
[23] |
B. Perthame,
Transport Equations in Biology, Frontiers in Mathematics, Birkhauser, 2007. |
[24] |
L. A. Segel,
A theoretical study of receptor mechanisms in bacterial chemotaxis, SIAM J.Appl.Math., 32 (1977), 653-665.
|
[25] |
C. Spadaccio, A. Rainer, S. De Porcellinis, M. Centola, F. De Marco, M. Chello, M. Trombetta and J. A. Genovese,
A G-CSF functionalized PLLA scaffold for wound repair: An in vitro preliminary study, Conf. Proc. IEEE Eng.Med.Biol.Soc., (2010), 843-846.
|
[26] |
J. Valein and E. Zuazua,
Stabilization of the wave equation on 1-D networks, SIAM J. Control Optim., 48 (2009), 2771-2797.
doi: 10.1137/080733590. |


[1] |
Giuseppe Viglialoro, Thomas E. Woolley. Eventual smoothness and asymptotic behaviour of solutions to a chemotaxis system perturbed by a logistic growth. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 3023-3045. doi: 10.3934/dcdsb.2017199 |
[2] |
Zaki Chbani, Hassan Riahi. Existence and asymptotic behaviour for solutions of dynamical equilibrium systems. Evolution Equations and Control Theory, 2014, 3 (1) : 1-14. doi: 10.3934/eect.2014.3.1 |
[3] |
Francesca R. Guarguaglini. Global solutions for a chemotaxis hyperbolic-parabolic system on networks with nonhomogeneous boundary conditions. Communications on Pure and Applied Analysis, 2020, 19 (2) : 1057-1087. doi: 10.3934/cpaa.2020049 |
[4] |
Akisato Kubo, Hiroki Hoshino, Katsutaka Kimura. Global existence and asymptotic behaviour of solutions for nonlinear evolution equations related to a tumour invasion model. Conference Publications, 2015, 2015 (special) : 733-744. doi: 10.3934/proc.2015.0733 |
[5] |
Georges Chamoun, Moustafa Ibrahim, Mazen Saad, Raafat Talhouk. Asymptotic behavior of solutions of a nonlinear degenerate chemotaxis model. Discrete and Continuous Dynamical Systems - B, 2020, 25 (11) : 4165-4188. doi: 10.3934/dcdsb.2020092 |
[6] |
Fuqin Sun, Mingxin Wang. Non-existence of global solutions for nonlinear strongly damped hyperbolic systems. Discrete and Continuous Dynamical Systems, 2005, 12 (5) : 949-958. doi: 10.3934/dcds.2005.12.949 |
[7] |
Lu Xu, Chunlai Mu, Qiao Xin. Global boundedness and asymptotic behavior of solutions for a quasilinear chemotaxis model of multiple sclerosis with nonlinear signal secretion. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022118 |
[8] |
Gui-Qiang Chen, Monica Torres. On the structure of solutions of nonlinear hyperbolic systems of conservation laws. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1011-1036. doi: 10.3934/cpaa.2011.10.1011 |
[9] |
Tohru Nakamura, Shinya Nishibata, Naoto Usami. Convergence rate of solutions towards the stationary solutions to symmetric hyperbolic-parabolic systems in half space. Kinetic and Related Models, 2018, 11 (4) : 757-793. doi: 10.3934/krm.2018031 |
[10] |
Maria Rosaria Lancia, Paola Vernole. The Stokes problem in fractal domains: Asymptotic behaviour of the solutions. Discrete and Continuous Dynamical Systems - S, 2020, 13 (5) : 1553-1565. doi: 10.3934/dcdss.2020088 |
[11] |
Toru Sasaki, Takashi Suzuki. Asymptotic behaviour of the solutions to a virus dynamics model with diffusion. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 525-541. doi: 10.3934/dcdsb.2017206 |
[12] |
Iryna Pankratova, Andrey Piatnitski. On the behaviour at infinity of solutions to stationary convection-diffusion equation in a cylinder. Discrete and Continuous Dynamical Systems - B, 2009, 11 (4) : 935-970. doi: 10.3934/dcdsb.2009.11.935 |
[13] |
Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6057-6068. doi: 10.3934/dcdsb.2021002 |
[14] |
Zhong Tan, Leilei Tong. Asymptotic stability of stationary solutions for magnetohydrodynamic equations. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 3435-3465. doi: 10.3934/dcds.2017146 |
[15] |
Mihaela Negreanu. Global existence and asymptotic behavior of solutions to a chemotaxis system with chemicals and prey-predator terms. Discrete and Continuous Dynamical Systems - B, 2020, 25 (9) : 3335-3356. doi: 10.3934/dcdsb.2020064 |
[16] |
Chunqing Lu. Asymptotic solutions of a nonlinear equation. Conference Publications, 2003, 2003 (Special) : 590-595. doi: 10.3934/proc.2003.2003.590 |
[17] |
Rafał Celiński, Andrzej Raczyński. Asymptotic profile of solutions to a certain chemotaxis system. Communications on Pure and Applied Analysis, 2020, 19 (2) : 911-922. doi: 10.3934/cpaa.2020041 |
[18] |
Petru Jebelean. Infinitely many solutions for ordinary $p$-Laplacian systems with nonlinear boundary conditions. Communications on Pure and Applied Analysis, 2008, 7 (2) : 267-275. doi: 10.3934/cpaa.2008.7.267 |
[19] |
Filomena Pacella, Dora Salazar. Asymptotic behaviour of sign changing radial solutions of Lane Emden Problems in the annulus. Discrete and Continuous Dynamical Systems - S, 2014, 7 (4) : 793-805. doi: 10.3934/dcdss.2014.7.793 |
[20] |
Miguel V. S. Frasson, Patricia H. Tacuri. Asymptotic behaviour of solutions to linear neutral delay differential equations with periodic coefficients. Communications on Pure and Applied Analysis, 2014, 13 (3) : 1105-1117. doi: 10.3934/cpaa.2014.13.1105 |
2021 Impact Factor: 1.41
Tools
Metrics
Other articles
by authors
[Back to Top]