March  2018, 13(1): 177-190. doi: 10.3934/nhm.2018008

Entropy-preserving coupling conditions for one-dimensional Euler systems at junctions

Department of Mathematics, Technische Universität Darmstadt, Dolivostraße 15, 64293 Darmstadt, Germany

Received  April 2017 Revised  September 2017 Published  March 2018

This paper is concerned with a set of novel coupling conditions for the 3× 3 one-dimensional Euler system with source terms at a junction of pipes with possibly different cross-sectional areas. Beside conservation of mass, we require the equality of the total enthalpy at the junction and that the specific entropy for pipes with outgoing flow equals the convex combination of all entropies that belong to pipes with incoming flow. Previously used coupling conditions include equality of pressure or dynamic pressure. They are restricted to the special case of a junction having only one pipe with outgoing flow direction. Recently, Reigstad [SIAM J. Appl. Math., 75:679-702,2015] showed that such pressure-based coupling conditions can produce non-physical solutions for isothermal flows through the production of mechanical energy. Our new coupling conditions ensure energy as well as entropy conservation and also apply to junctions connecting an arbitrary number of pipes with flexible flow directions. We prove the existence and uniqueness of solutions to the generalised Riemann problem at a junction in the neighbourhood of constant stationary states which belong to the subsonic region. This provides the basis for the well-posedness of the homogeneous and inhomogeneous Cauchy problems for initial data with sufficiently small total variation.

Citation: Jens Lang, Pascal Mindt. Entropy-preserving coupling conditions for one-dimensional Euler systems at junctions. Networks and Heterogeneous Media, 2018, 13 (1) : 177-190. doi: 10.3934/nhm.2018008
References:
[1]

M. K. BandaM. Herty and A. Klar, Gas flow in pipeline networks, Netw. Heterog. Media, 1 (2006), 41-56.  doi: 10.3934/nhm.2006.1.41.

[2]

M. K. BandaM. Herty and A. Klar, Coupling conditions for gas networks governed by the isothermal Euler equations, Netw. Heterog. Media, 1 (2006), 295-314.  doi: 10.3934/nhm.2006.1.295.

[3]

A. Bressan, Hyberbolic Systems of Conservation Laws: The One-dimensional Cauchy Problem, Oxford Lecture Series in Mathematics and Its Application, Oxford University Press, 2000.

[4]

C. ChalonsP. A. Raviart and N. Seguin, The interface coupling of the gas dynamics equations, Quaterly Appl. Math., 66 (2008), 659-705.  doi: 10.1090/S0033-569X-08-01087-X.

[5]

R. M. Colombo and M. Garavello, A well posed Riemann problem for the p-system at a junction, Netw. Heterog. Media, 1 (2006), 495-511.  doi: 10.3934/nhm.2006.1.495.

[6]

R. M. Colombo and G. Guerra, Hyperbolic balance laws with a non local source, Commun. Partial Differential Equations, 32 (2007), 1917-1939.  doi: 10.1080/03605300701318849.

[7]

R. M. Colombo and G. Guerra, Hyperbolic balance laws with a dissipative non local source, Commun. Pure Appl. Anal., 7 (2008), 1077-1090.  doi: 10.3934/cpaa.2008.7.1077.

[8]

R. M. ColomboG. GuerraM. Herty and V. Schleper, Optimal control in networks and pipes and canals, SIAM J. Control Optim., 48 (2009), 2032-2050.  doi: 10.1137/080716372.

[9]

R. M. Colombo and F. Marcellini, Coupling conditions for the 3× 3 Euler system, Netw. Heterog. Media, 5 (2009), 675-690.  doi: 10.3934/nhm.2010.5.675.

[10]

R. M. Colombo and C. Mauri, Euler systems for compressible fluids at a junction, J. Hyperbol. Differ. Eq., 5 (2008), 547-568.  doi: 10.1142/S0219891608001593.

[11]

C. Donadello and A. Marson, Stability of front tracking solutions to the initial and boundary value problem for systems of conservation laws, Nonlinear Differ. Equ. Appl., 14 (2007), 569-592.  doi: 10.1007/s00030-007-5010-7.

[12]

I. Gasser and M. Kraft, Modelling and simulation of fires in tunnel networks, Netw. Heterog. Media, 3 (2008), 691-707.  doi: 10.3934/nhm.2008.3.691.

[13]

M. Herty, Coupling conditions for networked systems of Euler equations, SIAM J. Sci. Comput., 30 (2008), 1596-1612.  doi: 10.1137/070688535.

[14]

R. J. LeVeque, Finite-Volume Methods for Hyperbolic Problems, Cambridge Texts in Applied Mathematics, Cambridge University Press, 2002.

[15]

A. Morin and G. A. Reigstad, Pipe networks: Coupling constants in a junction for the isentropic euler equations, Energy Procedia, 64 (2015), 140-149.  doi: 10.1016/j.egypro.2015.01.017.

[16]

G. A. Reigstad, Numerical network models and entropy principles for isothermal junction flow, Netw. Heterog. Media, 9 (2014), 65-95.  doi: 10.3934/nhm.2014.9.65.

[17]

G. A. Reigstad, Existence and uniqueness of solutions to the generalized Riemann problem for isentropic flow, SIAM J. Appl. Math., 75 (2015), 679-702.  doi: 10.1137/140962759.

[18]

G. A. ReigstadT. FlåttenN. E. Haugen and T. Ytrehus, Coupling constants and the generalized Riemann problem for isothermal junction flow, J. Hyperbol. Differ. Eq., 12 (2015), 37-59.  doi: 10.1142/S0219891615500022.

[19]

M. SchmidtM. C. Steinbach and B. M. Willert, High detail stationary optimization models for gas networks, Optim. Eng., 16 (2015), 131-164.  doi: 10.1007/s11081-014-9246-x.

[20]

T. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, Springer, 2009.

show all references

References:
[1]

M. K. BandaM. Herty and A. Klar, Gas flow in pipeline networks, Netw. Heterog. Media, 1 (2006), 41-56.  doi: 10.3934/nhm.2006.1.41.

[2]

M. K. BandaM. Herty and A. Klar, Coupling conditions for gas networks governed by the isothermal Euler equations, Netw. Heterog. Media, 1 (2006), 295-314.  doi: 10.3934/nhm.2006.1.295.

[3]

A. Bressan, Hyberbolic Systems of Conservation Laws: The One-dimensional Cauchy Problem, Oxford Lecture Series in Mathematics and Its Application, Oxford University Press, 2000.

[4]

C. ChalonsP. A. Raviart and N. Seguin, The interface coupling of the gas dynamics equations, Quaterly Appl. Math., 66 (2008), 659-705.  doi: 10.1090/S0033-569X-08-01087-X.

[5]

R. M. Colombo and M. Garavello, A well posed Riemann problem for the p-system at a junction, Netw. Heterog. Media, 1 (2006), 495-511.  doi: 10.3934/nhm.2006.1.495.

[6]

R. M. Colombo and G. Guerra, Hyperbolic balance laws with a non local source, Commun. Partial Differential Equations, 32 (2007), 1917-1939.  doi: 10.1080/03605300701318849.

[7]

R. M. Colombo and G. Guerra, Hyperbolic balance laws with a dissipative non local source, Commun. Pure Appl. Anal., 7 (2008), 1077-1090.  doi: 10.3934/cpaa.2008.7.1077.

[8]

R. M. ColomboG. GuerraM. Herty and V. Schleper, Optimal control in networks and pipes and canals, SIAM J. Control Optim., 48 (2009), 2032-2050.  doi: 10.1137/080716372.

[9]

R. M. Colombo and F. Marcellini, Coupling conditions for the 3× 3 Euler system, Netw. Heterog. Media, 5 (2009), 675-690.  doi: 10.3934/nhm.2010.5.675.

[10]

R. M. Colombo and C. Mauri, Euler systems for compressible fluids at a junction, J. Hyperbol. Differ. Eq., 5 (2008), 547-568.  doi: 10.1142/S0219891608001593.

[11]

C. Donadello and A. Marson, Stability of front tracking solutions to the initial and boundary value problem for systems of conservation laws, Nonlinear Differ. Equ. Appl., 14 (2007), 569-592.  doi: 10.1007/s00030-007-5010-7.

[12]

I. Gasser and M. Kraft, Modelling and simulation of fires in tunnel networks, Netw. Heterog. Media, 3 (2008), 691-707.  doi: 10.3934/nhm.2008.3.691.

[13]

M. Herty, Coupling conditions for networked systems of Euler equations, SIAM J. Sci. Comput., 30 (2008), 1596-1612.  doi: 10.1137/070688535.

[14]

R. J. LeVeque, Finite-Volume Methods for Hyperbolic Problems, Cambridge Texts in Applied Mathematics, Cambridge University Press, 2002.

[15]

A. Morin and G. A. Reigstad, Pipe networks: Coupling constants in a junction for the isentropic euler equations, Energy Procedia, 64 (2015), 140-149.  doi: 10.1016/j.egypro.2015.01.017.

[16]

G. A. Reigstad, Numerical network models and entropy principles for isothermal junction flow, Netw. Heterog. Media, 9 (2014), 65-95.  doi: 10.3934/nhm.2014.9.65.

[17]

G. A. Reigstad, Existence and uniqueness of solutions to the generalized Riemann problem for isentropic flow, SIAM J. Appl. Math., 75 (2015), 679-702.  doi: 10.1137/140962759.

[18]

G. A. ReigstadT. FlåttenN. E. Haugen and T. Ytrehus, Coupling constants and the generalized Riemann problem for isothermal junction flow, J. Hyperbol. Differ. Eq., 12 (2015), 37-59.  doi: 10.1142/S0219891615500022.

[19]

M. SchmidtM. C. Steinbach and B. M. Willert, High detail stationary optimization models for gas networks, Optim. Eng., 16 (2015), 131-164.  doi: 10.1007/s11081-014-9246-x.

[20]

T. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, Springer, 2009.

Figure 1.  Possible wave patterns in the solution of Riemann problems for the Euler equations: shock (S), contact (C) and rarefaction (R).
Figure 2.  Connection of the regions $L$, $L\ast$, $R\ast$, and $R$ with the Lax curve $\mathcal{L}_3$ for incoming pipes (a) and the Lax curves $\mathcal{L}_2\!\circ\!\mathcal{L}_3$ for outgoing pipes (b).
[1]

Mapundi K. Banda, Michael Herty, Axel Klar. Coupling conditions for gas networks governed by the isothermal Euler equations. Networks and Heterogeneous Media, 2006, 1 (2) : 295-314. doi: 10.3934/nhm.2006.1.295

[2]

Mauro Garavello. A review of conservation laws on networks. Networks and Heterogeneous Media, 2010, 5 (3) : 565-581. doi: 10.3934/nhm.2010.5.565

[3]

Haigang Li, Jiguang Bao. Euler-Poisson equations related to general compressible rotating fluids. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 1085-1096. doi: 10.3934/dcds.2011.29.1085

[4]

Paola Goatin, Philippe G. LeFloch. $L^1$ continuous dependence for the Euler equations of compressible fluids dynamics. Communications on Pure and Applied Analysis, 2003, 2 (1) : 107-137. doi: 10.3934/cpaa.2003.2.107

[5]

Laurent Lévi, Julien Jimenez. Coupling of scalar conservation laws in stratified porous media. Conference Publications, 2007, 2007 (Special) : 644-654. doi: 10.3934/proc.2007.2007.644

[6]

Georges Bastin, B. Haut, Jean-Michel Coron, Brigitte d'Andréa-Novel. Lyapunov stability analysis of networks of scalar conservation laws. Networks and Heterogeneous Media, 2007, 2 (4) : 751-759. doi: 10.3934/nhm.2007.2.751

[7]

Rinaldo M. Colombo, Francesca Marcellini. Coupling conditions for the $3\times 3$ Euler system. Networks and Heterogeneous Media, 2010, 5 (4) : 675-690. doi: 10.3934/nhm.2010.5.675

[8]

Yannick Holle, Michael Herty, Michael Westdickenberg. New coupling conditions for isentropic flow on networks. Networks and Heterogeneous Media, 2020, 15 (4) : 605-631. doi: 10.3934/nhm.2020016

[9]

Martin Gugat, Alexander Keimer, Günter Leugering, Zhiqiang Wang. Analysis of a system of nonlocal conservation laws for multi-commodity flow on networks. Networks and Heterogeneous Media, 2015, 10 (4) : 749-785. doi: 10.3934/nhm.2015.10.749

[10]

Markus Musch, Ulrik Skre Fjordholm, Nils Henrik Risebro. Well-posedness theory for nonlinear scalar conservation laws on networks. Networks and Heterogeneous Media, 2022, 17 (1) : 101-128. doi: 10.3934/nhm.2021025

[11]

C. M. Khalique, G. S. Pai. Conservation laws and invariant solutions for soil water equations. Conference Publications, 2003, 2003 (Special) : 477-481. doi: 10.3934/proc.2003.2003.477

[12]

Darko Mitrovic. New entropy conditions for scalar conservation laws with discontinuous flux. Discrete and Continuous Dynamical Systems, 2011, 30 (4) : 1191-1210. doi: 10.3934/dcds.2011.30.1191

[13]

Laura Caravenna, Annalisa Cesaroni, Hung Vinh Tran. Preface: Recent developments related to conservation laws and Hamilton-Jacobi equations. Discrete and Continuous Dynamical Systems - S, 2018, 11 (5) : i-iii. doi: 10.3934/dcdss.201805i

[14]

Chaudry Masood Khalique, Muhammad Usman, Maria Luz Gandarais. Nonlinear differential equations: Lie symmetries, conservation laws and other approaches of solving. Discrete and Continuous Dynamical Systems - S, 2020, 13 (10) : i-ii. doi: 10.3934/dcdss.2020415

[15]

Marianna Euler, Norbert Euler. Integrating factors and conservation laws for some Camassa-Holm type equations. Communications on Pure and Applied Analysis, 2012, 11 (4) : 1421-1430. doi: 10.3934/cpaa.2012.11.1421

[16]

Stephen Anco, Maria Rosa, Maria Luz Gandarias. Conservation laws and symmetries of time-dependent generalized KdV equations. Discrete and Continuous Dynamical Systems - S, 2018, 11 (4) : 607-615. doi: 10.3934/dcdss.2018035

[17]

Stephen C. Anco, Maria Luz Gandarias, Elena Recio. Conservation laws and line soliton solutions of a family of modified KP equations. Discrete and Continuous Dynamical Systems - S, 2020, 13 (10) : 2655-2665. doi: 10.3934/dcdss.2020225

[18]

Young-Pil Choi. Compressible Euler equations interacting with incompressible flow. Kinetic and Related Models, 2015, 8 (2) : 335-358. doi: 10.3934/krm.2015.8.335

[19]

Shuxing Chen, Gui-Qiang Chen, Zejun Wang, Dehua Wang. A multidimensional piston problem for the Euler equations for compressible flow. Discrete and Continuous Dynamical Systems, 2005, 13 (2) : 361-383. doi: 10.3934/dcds.2005.13.361

[20]

Qing Chen, Zhong Tan. Time decay of solutions to the compressible Euler equations with damping. Kinetic and Related Models, 2014, 7 (4) : 605-619. doi: 10.3934/krm.2014.7.605

2020 Impact Factor: 1.213

Metrics

  • PDF downloads (364)
  • HTML views (225)
  • Cited by (1)

Other articles
by authors

[Back to Top]