\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Propagation of regularity and finite-time collisions for the thermomechanical Cucker-Smale model with a singular communication

  • * Corresponding author

    * Corresponding author
Abstract Full Text(HTML) Figure(1) Related Papers Cited by
  • We study dynamical behaviors of the ensemble of thermomechanical Cucker-Smale (in short TCS) particles with singular power-law communication weights in velocity and temperatures. For the particle TCS model, we present several sufficient frameworks for the global regularity of solution and a finite-time breakdown depending on the blow-up exponents in the power-law communication weights at the origin where the relative spatial distances become zero. More precisely, when the blow-up exponent in velocity communication weight is greater than unity and the blow-up exponent in temperature communication weights is more than twice of blow-up exponent in velocity communication, we show that there will be no finite time collision between particles, unless there are collisions initially. In contrast, when the blow-up exponent of velocity communication weight is smaller than unity, we show that there can be a collision in finite time. For the kinetic TCS equation, we present a local-in-time existence of a unique weak solution using the suitable regularization and compactness arguments.

    Mathematics Subject Classification: 70F99, 92B25.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Initial configuration

  • [1] S. M. AhnH. ChoiS.-Y. Ha and H. Lee, On collision-avoiding initial configurations to Cucker-Smale type flocking models, Comm. Math. Sci., 10 (2012), 625-643.  doi: 10.4310/CMS.2012.v10.n2.a10.
    [2] J. A. Carrillo, Y. -P. Choi and M. Hauray, Local well-posedness of the generalized CuckerSmale model with singular kernels, Mathematical Modeling of Complex Systems, 17-35, ESAIM Proc. Surveys, 47, EDP Sci., Les Ulis, 2014. doi: 10.1051/proc/201447002.
    [3] J. A. CarrilloY.-P. ChoiP. B. Mucha and J. Peszek, Sharp conditions to avoid collisions in singular Cucker-Smale interactions, Nonlinear Anal.-Real., 37 (2017), 317-328.  doi: 10.1016/j.nonrwa.2017.02.017.
    [4] J. A. Carrillo, Y. -P. Choi and S. Pérez, A review on attractive-repulsive hydrodynamics for consensus in collective behavior, in Active Particles Vol. Ⅰ - Advances in Theory, Models, Applications(tentative title), Series: Modeling and Simulation in Science and Technology, (eds. N. Bellomo, P. Degond, and E. Tadmor), Birkhäuser Basel, (2017), 259-298.
    [5] J. A. CarrilloM. FornasierJ. Rosado and G. Toscani, Asymptotic flocking dynamics for the kinetic Cucker-Smale model, SIAM J. Math. Anal., 42 (2010), 218-236.  doi: 10.1137/090757290.
    [6] Y.-P. Choi, Global classical solutions of the Vlasov-Fokker-Planck equation with local alignment forces, Nonlinearity, 29 (2016), 1887-1916.  doi: 10.1088/0951-7715/29/7/1887.
    [7] Y. -P. Choi, S. -Y. Ha and Z. Li, Emergent dynamics of the Cucker-Smale flocking model and its variants, in Active Particles Vol. Ⅰ - Advances in Theory, Models, Applications(tentative title), Series: Modeling and Simulation in Science and Technology, (eds. N. Bellomo, P. Degond, and E. Tadmor), Birkhäuser Basel, (2017), 299-331.
    [8] F. Cucker and J.-G. Dong, Avoiding collisions in flocks, IEEE Trans. Automatic Control, 55 (2010), 1238-1243.  doi: 10.1109/TAC.2010.2042355.
    [9] F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862.  doi: 10.1109/TAC.2007.895842.
    [10] R. DuanM. Fornasier and G. Toscani, A kinetic flocking model with diffusion, Comm. Math. Phys., 300 (2010), 95-145.  doi: 10.1007/s00220-010-1110-z.
    [11] M. FornasierJ. Haskovec and G. Toscani, Fluid dynamic description of flocking via Povzner-Boltzmann equation, Physica D, 240 (2011), 21-31.  doi: 10.1016/j.physd.2010.08.003.
    [12] S. -Y. Ha, J. Kim, C. Min, T. Ruggeri and X. Zhang, Uniform stability and mean-field limit of thermodynamic Cucker-Smale model, Submitted.
    [13] S.-Y. HaJ. Kim and T. Ruggeri, Emergent behaviors of Thermodynamic Cucker-Smale particles, SIAM J. Math. Anal., 50 (2018), 3092-3121.  doi: 10.1137/17M111064X.
    [14] S.-Y. HaJ. Kim and X. Zhang, Uniform stability of the Cucker-Smale model and its application to the mean-field limit, Kinet. Relat. Models, 11 (2018), 1157-1181.  doi: 10.3934/krm.2018045.
    [15] S.-Y. HaB. Kwon and M.-J. Kang, Emergent dynamics for the hydrodynamic Cucker-Smale system in a moving domain, SIAM. J. Math. Anal., 47 (2015), 3813-3831.  doi: 10.1137/140984403.
    [16] S.-Y. HaK. Lee and D. Levy, Emergence of time-asymptotic flocking in a stochastic Cucker-Smale system, Commun. Math. Sci., 7 (2009), 453-469.  doi: 10.4310/CMS.2009.v7.n2.a9.
    [17] S.-Y. Ha and J.-G. Liu, A simple proof of Cucker-Smale flocking dynamics and mean field limit, Commun. Math. Sci., 7 (2009), 297-325.  doi: 10.4310/CMS.2009.v7.n2.a2.
    [18] S.-Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic description of flocking, Kinetic Relat. Models, 1 (2008), 415-435.  doi: 10.3934/krm.2008.1.415.
    [19] S.-Y. Ha and T. Ruggeri, Emergent dynamics of a thermodynamically consistent particle model, Arch. Ration. Mech. An., 223 (2017), 1397-1425.  doi: 10.1007/s00205-016-1062-3.
    [20] Z. Li and S.-Y. Ha, On the Cucker-Smale flocking with alternating leaders, Quart. Appl. Math., 73 (2015), 693-709.  doi: 10.1090/qam/1401.
    [21] Z. Li and X. Xue, Cucker-Smale flocking under rooted leadership with fixed and switching topologies, SIAM J. Appl. Math., 70 (2010), 3156-3174.  doi: 10.1137/100791774.
    [22] S. Motsch and E. Tadmor, Heterophilious dynamics: Enhanced Consensus, SIAM Review, 56 (2014), 577-621.  doi: 10.1137/120901866.
    [23] S. Motsch and E. Tadmor, A new model for self-organized dynamics and its flocking behavior, J. Statist. Phys., 144 (2011), 923-947.  doi: 10.1007/s10955-011-0285-9.
    [24] P. B. Mucha and J. Peszek, The Cucker-Smale equation: Singular communication weight, measure-valued solutions and weak-atomic uniqueness, Arch. Ration. Mech. Anal., 227 (2018), 273-308.  doi: 10.1007/s00205-017-1160-x.
    [25] J. Peszek, Discrete Cucker-Smale flocking model with a weakly singular weight, SIAM J. Math. Anal., 47 (2015), 3671-3686.  doi: 10.1137/15M1009299.
    [26] J. Peszek, Existence of piecewise weak solutions of a discrete Cucker-Smale's flocking model with a singular communication weight, J. Differ. Equat., 257 (2014), 2900-2925.  doi: 10.1016/j.jde.2014.06.003.
    [27] J. Shen, Cucker-Smale flocking under hierarchical leadership, SIAM J. Appl. Math., 68 (2007), 694-719.  doi: 10.1137/060673254.
    [28] J. Toner and Y. Tu, Flocks, herds, and Schools: A quantitative theory of flocking, Physical Review E., 58 (1998), 4828-4858.  doi: 10.1103/PhysRevE.58.4828.
    [29] C. M. Topaz and A. L. Bertozzi, Swarming patterns in a two-dimensional kinematic model for biological groups, SIAM J. Appl. Math., 65 (2004), 152-174.  doi: 10.1137/S0036139903437424.
    [30] T. VicsekCzirókE. Ben-JacobI. Cohen and O. Schochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), 1226-1229.  doi: 10.1103/PhysRevLett.75.1226.
    [31] C. Villani, Topics in Optimal Transportation, American Mathematical Society, 2003. doi: 10.1007/b12016.
    [32] C. Villani, Optimal Transport, Old and New, Springer-Verlag, 2009. doi: 10.1007/978-3-540-71050-9.
  • 加载中

Figures(1)

SHARE

Article Metrics

HTML views(639) PDF downloads(430) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return