
-
Previous Article
SIR Rumor spreading model with trust rate distribution
- NHM Home
- This Issue
-
Next Article
Interior regularity to the steady incompressible shear thinning fluids with non-Standard growth
Crystalline evolutions in chessboard-like microstructures
1. | Dipartimento di Matematica, Sapienza Università di Roma, Piazzale Aldo Moro 2, 00185 Roma, Italy |
2. | Dipartimento di Matematica, Università di Pisa, Largo B. Pontecorvo 5, 56217 Pisa, Italy |
We describe the macroscopic behavior of evolutions by crystalline curvature of planar sets in a chessboard-like medium, modeled by a periodic forcing term. We show that the underlying microstructure may produce both pinning and confinement effects on the geometric motion.
References:
[1] |
F. Almgren and J. E. Taylor,
Flat flow is motion by crystalline curvature for curves with crystalline energies, J. Differential Geometry, 42 (1995), 1-22.
doi: 10.4310/jdg/1214457030. |
[2] |
G. Barles, A. Cesaroni and M. Novaga,
Homogenization of fronts in highly heterogeneous media, SIAM J. Math. Anal., 43 (2011), 212-227.
doi: 10.1137/100800014. |
[3] |
G. Bellettini, R. Goglione and M. Novaga,
Approximation to driven motion by crystalline curvature in two dimensions, Adv. Math. Sci. and Appl., 10 (2000), 467-493.
|
[4] |
G. Bellettini, M. Novaga and M. Paolini,
Characterization of facet breaking for nonsmooth mean curvature flow in the convex case, Interfaces Free Bound., 3 (2001), 415-446.
doi: 10.4171/IFB/47. |
[5] |
G. Bellettini, M. Novaga and M. Paolini,
On a crystalline variational problem, part Ⅰ: First variation and global $L^∞$ regularity, Arch. Rational Mech. Anal, 57 (2001), 165-191.
doi: 10.1007/s002050010127. |
[6] |
G. Bellettini, M. Novaga and M. Paolini,
On a crystalline variational problem, part Ⅱ: $BV$ regularity and structure of minimizers on facets, Arch. Rational Mech. Anal., 157 (2001), 193-217.
doi: 10.1007/s002050100126. |
[7] |
A. Braides,
$Γ$-convergence for Beginners, Oxford University Press, 2002.
doi: 10.1093/acprof:oso/9780198507840.001.0001. |
[8] |
A. Braides, Local Minimization, Variational Evolution and Γ–convergence, Lecture Notes in
Mathematics, Springer, Berlin, 2014.
doi: 10.1007/978-3-319-01982-6. |
[9] |
A. Braides, M. Cicalese and N. K. Yip,
Crystalline Motion of Interfaces Between Patterns, J. Stat. Phys., 165 (2016), 274-319.
doi: 10.1007/s10955-016-1609-6. |
[10] |
A. Braides, M.S. Gelli and M. Novaga,
Motion and pinning of discrete interfaces, Arch. Ration. Mech. Anal., 195 (2010), 469-498.
doi: 10.1007/s00205-009-0215-z. |
[11] |
A. Braides, A. Malusa and M. Novaga, Crystalline evolutions with rapidly oscillating forcing
terms, to appear on Ann. Scuola Norm. Sci.
doi: 10.2422/2036-2145.201707_011. |
[12] |
A. Braides and G. Scilla,
Motion of discrete interfaces in periodic media, Interfaces Free Bound., 15 (2013), 451-476.
doi: 10.4171/IFB/310. |
[13] |
A. Braides and M. Solci,
Motion of discrete interfaces through mushy layers, J. Nonlinear Sci., 26 (2016), 1031-1053.
doi: 10.1007/s00332-016-9297-6. |
[14] |
A. Cesaroni, N. Dirr and M. Novaga,
Homogenization of a semilinear heat equation, J. Éc. polytech. Math., 4 (2017), 633-660.
doi: 10.5802/jep.54. |
[15] |
A. Cesaroni, M. Novaga and E. Valdinoci,
Curve shortening flow in heterogeneous media, Interfaces and Free Bound., 13 (2011), 485-505.
doi: 10.4171/IFB/269. |
[16] |
A. Chambolle, M. Morini and M. Ponsiglione,
Existence and uniqueness for a crystalline mean curvature flow, Comm. Pure Appl. Math., 70 (2017), 1084-1114.
doi: 10.1002/cpa.21668. |
[17] |
A. Chambolle, M. Morini, M. Novaga and M. Ponsiglione, Existence and uniqueness for anisotropic and crystalline mean curvature flows, preprint, arXiv: 1702.03094. |
[18] |
A. Chambolle and M. Novaga,
Approximation of the anisotropic mean curvature flow, Math. Models Methods Appl. Sci., 17 (2007), 833-844.
doi: 10.1142/S0218202507002121. |
[19] |
J. Cortes,
Discontinuous Dynamical Systems: A tutorial on solutions, nonsmooth analysis, and stability, IEEE Control Systems Magazine, 28 (2008), 36-73.
doi: 10.1109/MCS.2008.919306. |
[20] |
A. F. Filippov,
Differential Equations with Discontinuous Righthand Sides, vol. 18 of Mathematics and Its Applications. Dordrecht, The Netherlands, Kluwer Academic Publishers, 1988.
doi: 10.1007/978-94-015-7793-9. |
[21] |
Y. Giga,
Surface Evolution Equations. A Level Set Approach, vol. 99 of Monographs in Mathematics. Birkhäuser Verlag, Basel, 2006. |
[22] |
Y. Giga and M. E. Gurtin,
A comparison theorem for crystalline evolution in the plane, Quarterly of Applied Mathematics, 54 (1996), 727-737.
doi: 10.1090/qam/1417236. |
[23] |
Y. Giga and P. Rybka,
Facet bending in the driven crystalline curvature flow in the plane, J. Geom. Anal., 18 (2008), 109-147.
doi: 10.1007/s12220-007-9004-9. |
[24] |
Y. Giga and P. Rybka,
Facet bending driven by the planar crystalline curvature with a generic nonuniform forcing term, J. Differential Equations, 246 (2009), 2264-2303.
doi: 10.1016/j.jde.2009.01.009. |
[25] |
M. E. Gurtin,
Thermomechanics of Evolving Phase Boundaries in the Plane, Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 1993. |
[26] |
M. Novaga and E. Valdinoci,
Closed curves of prescribed curvature and a pinning effect, Netw. Heterog. Media, 6 (2011), 77-88.
doi: 10.3934/nhm.2011.6.77. |
[27] |
J. E. Taylor,
Crystalline variational problems, Bull. Amer. Math. Soc., 84 (1978), 568-588.
doi: 10.1090/S0002-9904-1978-14499-1. |
[28] |
J. E. Taylor, J. Cahn and C. Handwerker,
Geometric Models of Crystal Growth, Acta Metall. Mater., 40 (1992), 1443-1474.
|
show all references
References:
[1] |
F. Almgren and J. E. Taylor,
Flat flow is motion by crystalline curvature for curves with crystalline energies, J. Differential Geometry, 42 (1995), 1-22.
doi: 10.4310/jdg/1214457030. |
[2] |
G. Barles, A. Cesaroni and M. Novaga,
Homogenization of fronts in highly heterogeneous media, SIAM J. Math. Anal., 43 (2011), 212-227.
doi: 10.1137/100800014. |
[3] |
G. Bellettini, R. Goglione and M. Novaga,
Approximation to driven motion by crystalline curvature in two dimensions, Adv. Math. Sci. and Appl., 10 (2000), 467-493.
|
[4] |
G. Bellettini, M. Novaga and M. Paolini,
Characterization of facet breaking for nonsmooth mean curvature flow in the convex case, Interfaces Free Bound., 3 (2001), 415-446.
doi: 10.4171/IFB/47. |
[5] |
G. Bellettini, M. Novaga and M. Paolini,
On a crystalline variational problem, part Ⅰ: First variation and global $L^∞$ regularity, Arch. Rational Mech. Anal, 57 (2001), 165-191.
doi: 10.1007/s002050010127. |
[6] |
G. Bellettini, M. Novaga and M. Paolini,
On a crystalline variational problem, part Ⅱ: $BV$ regularity and structure of minimizers on facets, Arch. Rational Mech. Anal., 157 (2001), 193-217.
doi: 10.1007/s002050100126. |
[7] |
A. Braides,
$Γ$-convergence for Beginners, Oxford University Press, 2002.
doi: 10.1093/acprof:oso/9780198507840.001.0001. |
[8] |
A. Braides, Local Minimization, Variational Evolution and Γ–convergence, Lecture Notes in
Mathematics, Springer, Berlin, 2014.
doi: 10.1007/978-3-319-01982-6. |
[9] |
A. Braides, M. Cicalese and N. K. Yip,
Crystalline Motion of Interfaces Between Patterns, J. Stat. Phys., 165 (2016), 274-319.
doi: 10.1007/s10955-016-1609-6. |
[10] |
A. Braides, M.S. Gelli and M. Novaga,
Motion and pinning of discrete interfaces, Arch. Ration. Mech. Anal., 195 (2010), 469-498.
doi: 10.1007/s00205-009-0215-z. |
[11] |
A. Braides, A. Malusa and M. Novaga, Crystalline evolutions with rapidly oscillating forcing
terms, to appear on Ann. Scuola Norm. Sci.
doi: 10.2422/2036-2145.201707_011. |
[12] |
A. Braides and G. Scilla,
Motion of discrete interfaces in periodic media, Interfaces Free Bound., 15 (2013), 451-476.
doi: 10.4171/IFB/310. |
[13] |
A. Braides and M. Solci,
Motion of discrete interfaces through mushy layers, J. Nonlinear Sci., 26 (2016), 1031-1053.
doi: 10.1007/s00332-016-9297-6. |
[14] |
A. Cesaroni, N. Dirr and M. Novaga,
Homogenization of a semilinear heat equation, J. Éc. polytech. Math., 4 (2017), 633-660.
doi: 10.5802/jep.54. |
[15] |
A. Cesaroni, M. Novaga and E. Valdinoci,
Curve shortening flow in heterogeneous media, Interfaces and Free Bound., 13 (2011), 485-505.
doi: 10.4171/IFB/269. |
[16] |
A. Chambolle, M. Morini and M. Ponsiglione,
Existence and uniqueness for a crystalline mean curvature flow, Comm. Pure Appl. Math., 70 (2017), 1084-1114.
doi: 10.1002/cpa.21668. |
[17] |
A. Chambolle, M. Morini, M. Novaga and M. Ponsiglione, Existence and uniqueness for anisotropic and crystalline mean curvature flows, preprint, arXiv: 1702.03094. |
[18] |
A. Chambolle and M. Novaga,
Approximation of the anisotropic mean curvature flow, Math. Models Methods Appl. Sci., 17 (2007), 833-844.
doi: 10.1142/S0218202507002121. |
[19] |
J. Cortes,
Discontinuous Dynamical Systems: A tutorial on solutions, nonsmooth analysis, and stability, IEEE Control Systems Magazine, 28 (2008), 36-73.
doi: 10.1109/MCS.2008.919306. |
[20] |
A. F. Filippov,
Differential Equations with Discontinuous Righthand Sides, vol. 18 of Mathematics and Its Applications. Dordrecht, The Netherlands, Kluwer Academic Publishers, 1988.
doi: 10.1007/978-94-015-7793-9. |
[21] |
Y. Giga,
Surface Evolution Equations. A Level Set Approach, vol. 99 of Monographs in Mathematics. Birkhäuser Verlag, Basel, 2006. |
[22] |
Y. Giga and M. E. Gurtin,
A comparison theorem for crystalline evolution in the plane, Quarterly of Applied Mathematics, 54 (1996), 727-737.
doi: 10.1090/qam/1417236. |
[23] |
Y. Giga and P. Rybka,
Facet bending in the driven crystalline curvature flow in the plane, J. Geom. Anal., 18 (2008), 109-147.
doi: 10.1007/s12220-007-9004-9. |
[24] |
Y. Giga and P. Rybka,
Facet bending driven by the planar crystalline curvature with a generic nonuniform forcing term, J. Differential Equations, 246 (2009), 2264-2303.
doi: 10.1016/j.jde.2009.01.009. |
[25] |
M. E. Gurtin,
Thermomechanics of Evolving Phase Boundaries in the Plane, Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 1993. |
[26] |
M. Novaga and E. Valdinoci,
Closed curves of prescribed curvature and a pinning effect, Netw. Heterog. Media, 6 (2011), 77-88.
doi: 10.3934/nhm.2011.6.77. |
[27] |
J. E. Taylor,
Crystalline variational problems, Bull. Amer. Math. Soc., 84 (1978), 568-588.
doi: 10.1090/S0002-9904-1978-14499-1. |
[28] |
J. E. Taylor, J. Cahn and C. Handwerker,
Geometric Models of Crystal Growth, Acta Metall. Mater., 40 (1992), 1443-1474.
|








[1] |
Laura Sigalotti. Homogenization of pinning conditions on periodic networks. Networks and Heterogeneous Media, 2012, 7 (3) : 543-582. doi: 10.3934/nhm.2012.7.543 |
[2] |
Shin Kiriki, Ming-Chia Li, Teruhiko Soma. Geometric Lorenz flows with historic behavior. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 7021-7028. doi: 10.3934/dcds.2016105 |
[3] |
Ruiqi Jiang, Youde Wang, Jun Yang. Vortex structures for some geometric flows from pseudo-Euclidean spaces. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 1745-1777. doi: 10.3934/dcds.2019076 |
[4] |
Shouwen Fang, Peng Zhu. Differential Harnack estimates for backward heat equations with potentials under geometric flows. Communications on Pure and Applied Analysis, 2015, 14 (3) : 793-809. doi: 10.3934/cpaa.2015.14.793 |
[5] |
Annalisa Cesaroni, Valerio Pagliari. Convergence of nonlocal geometric flows to anisotropic mean curvature motion. Discrete and Continuous Dynamical Systems, 2021, 41 (10) : 4987-5008. doi: 10.3934/dcds.2021065 |
[6] |
Martin Heida, Stefan Neukamm, Mario Varga. Stochastic homogenization of $ \Lambda $-convex gradient flows. Discrete and Continuous Dynamical Systems - S, 2021, 14 (1) : 427-453. doi: 10.3934/dcdss.2020328 |
[7] |
Gianni Dal Maso, Alexander Mielke, Ulisse Stefanelli. Preface: Rate-independent evolutions. Discrete and Continuous Dynamical Systems - S, 2013, 6 (1) : i-ii. doi: 10.3934/dcdss.2013.6.1i |
[8] |
François Gay-Balmaz, Cesare Tronci, Cornelia Vizman. Geometric dynamics on the automorphism group of principal bundles: Geodesic flows, dual pairs and chromomorphism groups. Journal of Geometric Mechanics, 2013, 5 (1) : 39-84. doi: 10.3934/jgm.2013.5.39 |
[9] |
Stefano Almi, Massimo Fornasier, Richard Huber. Data-driven evolutions of critical points. Foundations of Data Science, 2020, 2 (3) : 207-255. doi: 10.3934/fods.2020011 |
[10] |
Carolina Mendoza, Jean Bragard, Pier Luigi Ramazza, Javier Martínez-Mardones, Stefano Boccaletti. Pinning control of spatiotemporal chaos in the LCLV device. Mathematical Biosciences & Engineering, 2007, 4 (3) : 523-530. doi: 10.3934/mbe.2007.4.523 |
[11] |
Matteo Novaga, Enrico Valdinoci. Closed curves of prescribed curvature and a pinning effect. Networks and Heterogeneous Media, 2011, 6 (1) : 77-88. doi: 10.3934/nhm.2011.6.77 |
[12] |
Mickaël Dos Santos, Oleksandr Misiats. Ginzburg-Landau model with small pinning domains. Networks and Heterogeneous Media, 2011, 6 (4) : 715-753. doi: 10.3934/nhm.2011.6.715 |
[13] |
Tiantian Mu, Jun-E Feng, Biao Wang. Pinning detectability of Boolean control networks with injection mode. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022089 |
[14] |
Michael Shearer, Nicholas Giffen. Shock formation and breaking in granular avalanches. Discrete and Continuous Dynamical Systems, 2010, 27 (2) : 693-714. doi: 10.3934/dcds.2010.27.693 |
[15] |
Freddy Dumortier, Robert Roussarie. Canard cycles with two breaking parameters. Discrete and Continuous Dynamical Systems, 2007, 17 (4) : 787-806. doi: 10.3934/dcds.2007.17.787 |
[16] |
Maksim Maydanskiy, Benjamin P. Mirabelli. Semisimplicity of the quantum cohomology for smooth Fano toric varieties associated with facet symmetric polytopes. Electronic Research Announcements, 2011, 18: 131-143. doi: 10.3934/era.2011.18.131 |
[17] |
Stefano Bosia, Michela Eleuteri, Elisabetta Rocca, Enrico Valdinoci. Preface: Special issue on rate-independent evolutions and hysteresis modelling. Discrete and Continuous Dynamical Systems - S, 2015, 8 (4) : i-i. doi: 10.3934/dcdss.2015.8.4i |
[18] |
Francis Michael Russell, J. C. Eilbeck. Persistent mobile lattice excitations in a crystalline insulator. Discrete and Continuous Dynamical Systems - S, 2011, 4 (5) : 1267-1285. doi: 10.3934/dcdss.2011.4.1267 |
[19] |
Mi-Ho Giga, Yoshikazu Giga, Ryo Kuroda, Yusuke Ochiai. Crystalline flow starting from a general polygon. Discrete and Continuous Dynamical Systems, 2022, 42 (4) : 2027-2051. doi: 10.3934/dcds.2021182 |
[20] |
Jean-Marie Souriau. On Geometric Mechanics. Discrete and Continuous Dynamical Systems, 2007, 19 (3) : 595-607. doi: 10.3934/dcds.2007.19.595 |
2021 Impact Factor: 1.41
Tools
Metrics
Other articles
by authors
[Back to Top]