
-
Previous Article
Long time behavior for the visco-elastic damped wave equation in $\mathbb{R}^n_+$ and the boundary effect
- NHM Home
- This Issue
- Next Article
A Godunov type scheme for a class of LWR traffic flow models with non-local flux
University of Mannheim, Department of Mathematics, 68131 Mannheim, Germany |
We present a Godunov type numerical scheme for a class of scalar conservation laws with non-local flux arising for example in traffic flow models. The proposed scheme delivers more accurate solutions than the widely used Lax-Friedrichs type scheme. In contrast to other approaches, we consider a non-local mean velocity instead of a mean density and provide $L^∞$ and bounded variation estimates for the sequence of approximate solutions. Together with a discrete entropy inequality, we also show the well-posedness of the considered class of scalar conservation laws. The better accuracy of the Godunov type scheme in comparison to Lax-Friedrichs is proved by a variety of numerical examples.
References:
[1] |
A. Aggarwal, R. M. Colombo and P. Goatin,
Nonlocal systems of conservation laws in several space dimensions, SIAM J. Numer. Anal., 53 (2015), 963-983.
doi: 10.1137/140975255. |
[2] |
P. Amorim, R. M. Colombo and A. Teixeira,
On the numerical integration of scalar nonlocal conservation laws, ESAIM Math. Model. Numer. Anal., 49 (2015), 19-37.
doi: 10.1051/m2an/2014023. |
[3] |
D. Armbruster, D. E. Marthaler, C. Ringhofer, K. Kempf and T.-C. Jo,
A continuum model for a re-entrant factory, Oper. Res., 54 (2006), 933-950.
doi: 10.1287/opre.1060.0321. |
[4] |
F. Betancourt, R. Bürger, K. H. Karlsen and E. M. Tory,
On nonlocal conservation laws modelling sedimentation, Nonlinearity, 24 (2011), 855-885.
doi: 10.1088/0951-7715/24/3/008. |
[5] |
S. Blandin and P. Goatin,
Well-posedness of a conservation law with non-local flux arising in traffic flow modeling, Numer. Math., 132 (2016), 217-241.
doi: 10.1007/s00211-015-0717-6. |
[6] |
C. Chalons, P. Goatin and L. M. Villada,
High-order numerical schemes for one-dimensional nonlocal conservation laws, SIAM J. Sci. Comput., 40 (2018), A288-A305.
doi: 10.1137/16M110825X. |
[7] |
F. A. Chiarello and P. Goatin,
Global entropy weak solutions for general non-local traffic flow models with anisotropic kernel, ESAIM: Mathematical Modelling and Numerical Analysis, 52 (2018), 163-180.
doi: 10.1051/m2an/2017066. |
[8] |
R. Colombo, M. Garavello and and M. Lécureux-Mercier,
A class of nonlocal models for pedestrian traffic, Math. Models Methods Appl. Sci., 22 (2012), 1150023-1150057.
doi: 10.1142/S0218202511500230. |
[9] |
R. Colombo, M. Herty and M. Mercier,
Control of the continuity equation with a non local flow, ESAIM Control Optim. Calc. Var., 17 (2011), 353-379.
doi: 10.1051/cocv/2010007. |
[10] |
P. Goatin and S. Scialanga, The Lighthill-Whitham-Richards traffic flow model with non-local velocity: Analytical study and numerical results, INRIA Research Report, 2015. |
[11] |
P. Goatin and S. Scialanga,
Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity, Netw. Heterog. Media, 11 (2016), 107-121.
doi: 10.3934/nhm.2016.11.107. |
[12] |
S. Göttlich, S. Hoher, P. Schindler, V. Schleper and A. Verl,
Modeling, simulation and validation of material flow on conveyor belts, Appl. Math. Model., 38 (2014), 3295-3313.
doi: 10.1016/j.apm.2013.11.039. |
[13] |
S. N. Kružkov, First order quasilinear equations in several independent variables,
Mathematics of the USSR-Sbornik, 10 (1970), 217.
doi: 10.1070/SM1970v010n02ABEH002156. |
[14] |
R. J. LeVeque,
Numerical Methods for Conservation Laws, Birkhäuser Verlag, Basel, 1990.
doi: 10.1007/978-3-0348-5116-9. |
[15] |
M. J. Lighthill and G. B. Whitham,
On kinematic waves. Ⅱ. A theory of traffic flow on long crowded roads, Proc. Roy. Soc. London. Ser. A., 229 (1955), 317-345.
doi: 10.1098/rspa.1955.0089. |
[16] |
P. I. Richards,
Shock waves on the highway, Oper. Res., 4 (1956), 42-51.
doi: 10.1287/opre.4.1.42. |
show all references
References:
[1] |
A. Aggarwal, R. M. Colombo and P. Goatin,
Nonlocal systems of conservation laws in several space dimensions, SIAM J. Numer. Anal., 53 (2015), 963-983.
doi: 10.1137/140975255. |
[2] |
P. Amorim, R. M. Colombo and A. Teixeira,
On the numerical integration of scalar nonlocal conservation laws, ESAIM Math. Model. Numer. Anal., 49 (2015), 19-37.
doi: 10.1051/m2an/2014023. |
[3] |
D. Armbruster, D. E. Marthaler, C. Ringhofer, K. Kempf and T.-C. Jo,
A continuum model for a re-entrant factory, Oper. Res., 54 (2006), 933-950.
doi: 10.1287/opre.1060.0321. |
[4] |
F. Betancourt, R. Bürger, K. H. Karlsen and E. M. Tory,
On nonlocal conservation laws modelling sedimentation, Nonlinearity, 24 (2011), 855-885.
doi: 10.1088/0951-7715/24/3/008. |
[5] |
S. Blandin and P. Goatin,
Well-posedness of a conservation law with non-local flux arising in traffic flow modeling, Numer. Math., 132 (2016), 217-241.
doi: 10.1007/s00211-015-0717-6. |
[6] |
C. Chalons, P. Goatin and L. M. Villada,
High-order numerical schemes for one-dimensional nonlocal conservation laws, SIAM J. Sci. Comput., 40 (2018), A288-A305.
doi: 10.1137/16M110825X. |
[7] |
F. A. Chiarello and P. Goatin,
Global entropy weak solutions for general non-local traffic flow models with anisotropic kernel, ESAIM: Mathematical Modelling and Numerical Analysis, 52 (2018), 163-180.
doi: 10.1051/m2an/2017066. |
[8] |
R. Colombo, M. Garavello and and M. Lécureux-Mercier,
A class of nonlocal models for pedestrian traffic, Math. Models Methods Appl. Sci., 22 (2012), 1150023-1150057.
doi: 10.1142/S0218202511500230. |
[9] |
R. Colombo, M. Herty and M. Mercier,
Control of the continuity equation with a non local flow, ESAIM Control Optim. Calc. Var., 17 (2011), 353-379.
doi: 10.1051/cocv/2010007. |
[10] |
P. Goatin and S. Scialanga, The Lighthill-Whitham-Richards traffic flow model with non-local velocity: Analytical study and numerical results, INRIA Research Report, 2015. |
[11] |
P. Goatin and S. Scialanga,
Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity, Netw. Heterog. Media, 11 (2016), 107-121.
doi: 10.3934/nhm.2016.11.107. |
[12] |
S. Göttlich, S. Hoher, P. Schindler, V. Schleper and A. Verl,
Modeling, simulation and validation of material flow on conveyor belts, Appl. Math. Model., 38 (2014), 3295-3313.
doi: 10.1016/j.apm.2013.11.039. |
[13] |
S. N. Kružkov, First order quasilinear equations in several independent variables,
Mathematics of the USSR-Sbornik, 10 (1970), 217.
doi: 10.1070/SM1970v010n02ABEH002156. |
[14] |
R. J. LeVeque,
Numerical Methods for Conservation Laws, Birkhäuser Verlag, Basel, 1990.
doi: 10.1007/978-3-0348-5116-9. |
[15] |
M. J. Lighthill and G. B. Whitham,
On kinematic waves. Ⅱ. A theory of traffic flow on long crowded roads, Proc. Roy. Soc. London. Ser. A., 229 (1955), 317-345.
doi: 10.1098/rspa.1955.0089. |
[16] |
P. I. Richards,
Shock waves on the highway, Oper. Res., 4 (1956), 42-51.
doi: 10.1287/opre.4.1.42. |




| Godunov | LxF |
0 | 9.38e-03 | 1.99e-02 |
1 | 6.97e-03 | 1.30e-02 |
2 | 4.29e-03 | 9.31e-03 |
3 | 3.00e-03 | 6.41e-03 |
4 | 1.96e-03 | 4.27e-03 |
5 | 1.33e-03 | 2.71e-03 |
6 | 9.05e-04 | 1.64e-03 |
| Godunov | LxF |
0 | 9.38e-03 | 1.99e-02 |
1 | 6.97e-03 | 1.30e-02 |
2 | 4.29e-03 | 9.31e-03 |
3 | 3.00e-03 | 6.41e-03 |
4 | 1.96e-03 | 4.27e-03 |
5 | 1.33e-03 | 2.71e-03 |
6 | 9.05e-04 | 1.64e-03 |
| Godunov | LxF |
0 | 1.77e-02 | 3.13e-02 |
1 | 1.24e-02 | 2.20e-02 |
2 | 8.49e-03 | 1.41e-02 |
3 | 5.18e-03 | 8.67e-03 |
4 | 3.29e-03 | 5.45e-03 |
5 | 2.02e-03 | 3.47e-03 |
6 | 1.21e-03 | 2.06e-03 |
| Godunov | LxF |
0 | 1.77e-02 | 3.13e-02 |
1 | 1.24e-02 | 2.20e-02 |
2 | 8.49e-03 | 1.41e-02 |
3 | 5.18e-03 | 8.67e-03 |
4 | 3.29e-03 | 5.45e-03 |
5 | 2.02e-03 | 3.47e-03 |
6 | 1.21e-03 | 2.06e-03 |
| | | | |
| 4.46e-02 | 6.85e-03 | 9.90e-04 | 1.60e-04 |
| | | | |
| 4.46e-02 | 6.85e-03 | 9.90e-04 | 1.60e-04 |
[1] |
Felisia Angela Chiarello, Paola Goatin. Non-local multi-class traffic flow models. Networks and Heterogeneous Media, 2019, 14 (2) : 371-387. doi: 10.3934/nhm.2019015 |
[2] |
Wen Shen. Traveling waves for conservation laws with nonlocal flux for traffic flow on rough roads. Networks and Heterogeneous Media, 2019, 14 (4) : 709-732. doi: 10.3934/nhm.2019028 |
[3] |
Marco Di Francesco, Graziano Stivaletta. Convergence of the follow-the-leader scheme for scalar conservation laws with space dependent flux. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 233-266. doi: 10.3934/dcds.2020010 |
[4] |
Florent Berthelin, Paola Goatin. Regularity results for the solutions of a non-local model of traffic flow. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3197-3213. doi: 10.3934/dcds.2019132 |
[5] |
Adimurthi , Shyam Sundar Ghoshal, G. D. Veerappa Gowda. Exact controllability of scalar conservation laws with strict convex flux. Mathematical Control and Related Fields, 2014, 4 (4) : 401-449. doi: 10.3934/mcrf.2014.4.401 |
[6] |
Maria Laura Delle Monache, Paola Goatin. Stability estimates for scalar conservation laws with moving flux constraints. Networks and Heterogeneous Media, 2017, 12 (2) : 245-258. doi: 10.3934/nhm.2017010 |
[7] |
Darko Mitrovic. New entropy conditions for scalar conservation laws with discontinuous flux. Discrete and Continuous Dynamical Systems, 2011, 30 (4) : 1191-1210. doi: 10.3934/dcds.2011.30.1191 |
[8] |
Mauro Garavello, Roberto Natalini, Benedetto Piccoli, Andrea Terracina. Conservation laws with discontinuous flux. Networks and Heterogeneous Media, 2007, 2 (1) : 159-179. doi: 10.3934/nhm.2007.2.159 |
[9] |
Paola Goatin, Sheila Scialanga. Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity. Networks and Heterogeneous Media, 2016, 11 (1) : 107-121. doi: 10.3934/nhm.2016.11.107 |
[10] |
Alberto Bressan, Khai T. Nguyen. Conservation law models for traffic flow on a network of roads. Networks and Heterogeneous Media, 2015, 10 (2) : 255-293. doi: 10.3934/nhm.2015.10.255 |
[11] |
Michiel Bertsch, Flavia Smarrazzo, Andrea Terracina, Alberto Tesei. Signed Radon measure-valued solutions of flux saturated scalar conservation laws. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3143-3169. doi: 10.3934/dcds.2020041 |
[12] |
Stefano Bianchini, Elio Marconi. On the concentration of entropy for scalar conservation laws. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 73-88. doi: 10.3934/dcdss.2016.9.73 |
[13] |
Julien Jimenez. Scalar conservation law with discontinuous flux in a bounded domain. Conference Publications, 2007, 2007 (Special) : 520-530. doi: 10.3934/proc.2007.2007.520 |
[14] |
Badr Saad T. Alkahtani, Ilknur Koca. A new numerical scheme applied on re-visited nonlinear model of predator-prey based on derivative with non-local and non-singular kernel. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 429-442. doi: 10.3934/dcdss.2020024 |
[15] |
Boris Andreianov, Kenneth H. Karlsen, Nils H. Risebro. On vanishing viscosity approximation of conservation laws with discontinuous flux. Networks and Heterogeneous Media, 2010, 5 (3) : 617-633. doi: 10.3934/nhm.2010.5.617 |
[16] |
Laurent Lévi, Julien Jimenez. Coupling of scalar conservation laws in stratified porous media. Conference Publications, 2007, 2007 (Special) : 644-654. doi: 10.3934/proc.2007.2007.644 |
[17] |
Georges Bastin, B. Haut, Jean-Michel Coron, Brigitte d'Andréa-Novel. Lyapunov stability analysis of networks of scalar conservation laws. Networks and Heterogeneous Media, 2007, 2 (4) : 751-759. doi: 10.3934/nhm.2007.2.751 |
[18] |
Yanan Li, Alexandre N. Carvalho, Tito L. M. Luna, Estefani M. Moreira. A non-autonomous bifurcation problem for a non-local scalar one-dimensional parabolic equation. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5181-5196. doi: 10.3934/cpaa.2020232 |
[19] |
Michael Herty, Reinhard Illner. Analytical and numerical investigations of refined macroscopic traffic flow models. Kinetic and Related Models, 2010, 3 (2) : 311-333. doi: 10.3934/krm.2010.3.311 |
[20] |
Rinaldo M. Colombo, Francesca Marcellini, Elena Rossi. Biological and industrial models motivating nonlocal conservation laws: A review of analytic and numerical results. Networks and Heterogeneous Media, 2016, 11 (1) : 49-67. doi: 10.3934/nhm.2016.11.49 |
2020 Impact Factor: 1.213
Tools
Metrics
Other articles
by authors
[Back to Top]