
-
Previous Article
Energy and implicit discretization of the Fokker-Planck and Keller-Segel type equations
- NHM Home
- This Issue
-
Next Article
Special issue on mathematical methods in systems biology
Controlled cellular automata
2565 Mc Carthy Mall, Department of Mathematics, University of Hawaii at Manoa, Honolulu, 96822, USA |
Cellular Automata have been successfully used to model evolution of complex systems based on simples rules. In this paper we introduce controlled cellular automata to depict the dynamics of systems with controls that can affect their evolution. Using theory from discrete control systems, we derive results for the control of cellular automata in specific cases. The paper is mostly oriented toward two applications: fire spreading; morphogenesis and tumor growth. In both cases, we illustrate the impact of a control on the evolution of the system. For the fire, the control is assumed to be either firelines or firebreaks to prevent spreading or dumping of water, fire retardant and chemicals (foam) on the fire to neutralize it. In the case of cellular growth, the control describes mechanisms used to regulate growth factors and morphogenic events based on the existence of extracellular matrix structures called fractones. The hypothesis is that fractone distribution may coordinate the timing and location of neural cell proliferation, thereby guiding morphogenesis, at several stages of early brain development.
References:
[1] |
T. Alarcón, H. M. Byrne and P. K. Maini,
A cellular automaton model for tumour growth in inhomogeneous environment, Journal of Theoretical Biology, 225 (2003), 257-274.
doi: 10.1016/S0022-5193(03)00244-3. |
[2] |
A. Beros, M. Chyba, A. Fronville and F. Mercier, A morphogenetic cellular automaton, in 2018 Annual American Control Conference (ACC), IEEE, 2018, 1987–1992.
doi: 10.23919/ACC.2018.8431498. |
[3] |
A. B. Bishop, Introduction to Discrete Linear Controls: Theory and Application, Elsevier, 2014. |
[4] |
H. H. Chen and G. W. Brodland,
Cell-level finite element studies of viscous cells in planar aggregates, Journal of Biomechanical Engineering, 122 (2000), 394-401.
doi: 10.1115/1.1286563. |
[5] |
V. Douet, A. Kerever, E. Arikawa-Hirasawa and F. Mercier,
Fractone-heparan sulphates mediate fgf-2 stimulation of cell proliferation in the adult subventricular zone, Cell Proliferation, 46 (2013), 137-145.
doi: 10.1111/cpr.12023. |
[6] |
S. El Yacoubi and P. Jacewicz, Cellular automata and controllability problem, in CD-Rom Proceeding of the 14th Int. Symp. on Mathematical Theory of Networks and Systems, june, 2000, 19–23. |
[7] |
S. El Yacoubi, P. Jacewicz and N. Ammor,
Analyse et contrôle par automates cellulaires, Annals of the University of Craiova-Mathematics and Computer Science Series, 30 (2003), 210-221.
|
[8] |
A. Kerever, J. Schnack, D. Vellinga, N. Ichikawa, C. Moon, E. Arikawa-Hirasawa, J. T. Efird and F. Mercier,
Novel extracellular matrix structures in the neural stem cell niche capture the neurogenic factor fibroblast growth factor 2 from the extracellular milieu, Stem Cells, 25 (2007), 2146-2157.
doi: 10.1634/stemcells.2007-0082. |
[9] |
M. Mamei, A. Roli and F. Zambonelli,
Emergence and control of macro-spatial structures in perturbed cellular automata, and implications for pervasive computing systems, IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 35 (2005), 337-348.
doi: 10.1109/TSMCA.2005.846379. |
[10] |
F. Mercier,
Fractones: Extracellular matrix niche controlling stem cell fate and growth factor activity in the brain in health and disease, Cellular and Molecular Life Sciences, 73 (2016), 4661-4674.
doi: 10.1007/s00018-016-2314-y. |
[11] |
F. Mercier and V. Douet,
Bone morphogenetic protein-4 inhibits adult neurogenesis and is regulated by fractone-associated heparan sulfates in the subventricular zone, Journal of Chemical Neuroanatomy, 57 (2014), 54-61.
doi: 10.1016/j.jchemneu.2014.03.005. |
[12] |
F. Mercier, J. T. Kitasako and G. I. Hatton,
Anatomy of the brain neurogenic zones revisited: Fractones and the fibroblast/macrophage network, Journal of Comparative Neurology, 451 (2002), 170-188.
doi: 10.1002/cne.10342. |
[13] |
N. J. Popławski, M. Swat, J. S. Gens and J. A. Glazier,
Adhesion between cells, diffusion of growth factors, and elasticity of the aer produce the paddle shape of the chick limb, Physica A: Statistical Mechanics and its Applications, 373 (2007), 521-532.
|
[14] |
D. Walker, S. Wood, J. Southgate, M. Holcombe and R. Smallwood,
An integrated agent-mathematical model of the effect of intercellular signalling via the epidermal growth factor receptor on cell proliferation, Journal of Theoretical Biology, 242 (2006), 774-789.
doi: 10.1016/j.jtbi.2006.04.020. |
show all references
References:
[1] |
T. Alarcón, H. M. Byrne and P. K. Maini,
A cellular automaton model for tumour growth in inhomogeneous environment, Journal of Theoretical Biology, 225 (2003), 257-274.
doi: 10.1016/S0022-5193(03)00244-3. |
[2] |
A. Beros, M. Chyba, A. Fronville and F. Mercier, A morphogenetic cellular automaton, in 2018 Annual American Control Conference (ACC), IEEE, 2018, 1987–1992.
doi: 10.23919/ACC.2018.8431498. |
[3] |
A. B. Bishop, Introduction to Discrete Linear Controls: Theory and Application, Elsevier, 2014. |
[4] |
H. H. Chen and G. W. Brodland,
Cell-level finite element studies of viscous cells in planar aggregates, Journal of Biomechanical Engineering, 122 (2000), 394-401.
doi: 10.1115/1.1286563. |
[5] |
V. Douet, A. Kerever, E. Arikawa-Hirasawa and F. Mercier,
Fractone-heparan sulphates mediate fgf-2 stimulation of cell proliferation in the adult subventricular zone, Cell Proliferation, 46 (2013), 137-145.
doi: 10.1111/cpr.12023. |
[6] |
S. El Yacoubi and P. Jacewicz, Cellular automata and controllability problem, in CD-Rom Proceeding of the 14th Int. Symp. on Mathematical Theory of Networks and Systems, june, 2000, 19–23. |
[7] |
S. El Yacoubi, P. Jacewicz and N. Ammor,
Analyse et contrôle par automates cellulaires, Annals of the University of Craiova-Mathematics and Computer Science Series, 30 (2003), 210-221.
|
[8] |
A. Kerever, J. Schnack, D. Vellinga, N. Ichikawa, C. Moon, E. Arikawa-Hirasawa, J. T. Efird and F. Mercier,
Novel extracellular matrix structures in the neural stem cell niche capture the neurogenic factor fibroblast growth factor 2 from the extracellular milieu, Stem Cells, 25 (2007), 2146-2157.
doi: 10.1634/stemcells.2007-0082. |
[9] |
M. Mamei, A. Roli and F. Zambonelli,
Emergence and control of macro-spatial structures in perturbed cellular automata, and implications for pervasive computing systems, IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 35 (2005), 337-348.
doi: 10.1109/TSMCA.2005.846379. |
[10] |
F. Mercier,
Fractones: Extracellular matrix niche controlling stem cell fate and growth factor activity in the brain in health and disease, Cellular and Molecular Life Sciences, 73 (2016), 4661-4674.
doi: 10.1007/s00018-016-2314-y. |
[11] |
F. Mercier and V. Douet,
Bone morphogenetic protein-4 inhibits adult neurogenesis and is regulated by fractone-associated heparan sulfates in the subventricular zone, Journal of Chemical Neuroanatomy, 57 (2014), 54-61.
doi: 10.1016/j.jchemneu.2014.03.005. |
[12] |
F. Mercier, J. T. Kitasako and G. I. Hatton,
Anatomy of the brain neurogenic zones revisited: Fractones and the fibroblast/macrophage network, Journal of Comparative Neurology, 451 (2002), 170-188.
doi: 10.1002/cne.10342. |
[13] |
N. J. Popławski, M. Swat, J. S. Gens and J. A. Glazier,
Adhesion between cells, diffusion of growth factors, and elasticity of the aer produce the paddle shape of the chick limb, Physica A: Statistical Mechanics and its Applications, 373 (2007), 521-532.
|
[14] |
D. Walker, S. Wood, J. Southgate, M. Holcombe and R. Smallwood,
An integrated agent-mathematical model of the effect of intercellular signalling via the epidermal growth factor receptor on cell proliferation, Journal of Theoretical Biology, 242 (2006), 774-789.
doi: 10.1016/j.jtbi.2006.04.020. |














[1] |
Achilles Beros, Monique Chyba, Kari Noe. Co-evolving cellular automata for morphogenesis. Discrete and Continuous Dynamical Systems - B, 2019, 24 (5) : 2053-2071. doi: 10.3934/dcdsb.2019084 |
[2] |
Xinxin Tan, Shujuan Li, Sisi Liu, Zhiwei Zhao, Lisa Huang, Jiatai Gang. Dynamic simulation of a SEIQR-V epidemic model based on cellular automata. Numerical Algebra, Control and Optimization, 2015, 5 (4) : 327-337. doi: 10.3934/naco.2015.5.327 |
[3] |
T.K. Subrahmonian Moothathu. Homogeneity of surjective cellular automata. Discrete and Continuous Dynamical Systems, 2005, 13 (1) : 195-202. doi: 10.3934/dcds.2005.13.195 |
[4] |
Marcus Pivato. Invariant measures for bipermutative cellular automata. Discrete and Continuous Dynamical Systems, 2005, 12 (4) : 723-736. doi: 10.3934/dcds.2005.12.723 |
[5] |
Ana I. Muñoz, José Ignacio Tello. Mathematical analysis and numerical simulation of a model of morphogenesis. Mathematical Biosciences & Engineering, 2011, 8 (4) : 1035-1059. doi: 10.3934/mbe.2011.8.1035 |
[6] |
Bernard Host, Alejandro Maass, Servet Martínez. Uniform Bernoulli measure in dynamics of permutative cellular automata with algebraic local rules. Discrete and Continuous Dynamical Systems, 2003, 9 (6) : 1423-1446. doi: 10.3934/dcds.2003.9.1423 |
[7] |
Marcelo Sobottka. Right-permutative cellular automata on topological Markov chains. Discrete and Continuous Dynamical Systems, 2008, 20 (4) : 1095-1109. doi: 10.3934/dcds.2008.20.1095 |
[8] |
Aleksandar Zatezalo, Dušan M. Stipanović. Control of dynamical systems with discrete and uncertain observations. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4665-4681. doi: 10.3934/dcds.2015.35.4665 |
[9] |
Qiying Hu, Wuyi Yue. Optimal control for resource allocation in discrete event systems. Journal of Industrial and Management Optimization, 2006, 2 (1) : 63-80. doi: 10.3934/jimo.2006.2.63 |
[10] |
Akinori Awazu. Input-dependent wave propagations in asymmetric cellular automata: Possible behaviors of feed-forward loop in biological reaction network. Mathematical Biosciences & Engineering, 2008, 5 (3) : 419-427. doi: 10.3934/mbe.2008.5.419 |
[11] |
Qiying Hu, Wuyi Yue. Optimal control for discrete event systems with arbitrary control pattern. Discrete and Continuous Dynamical Systems - B, 2006, 6 (3) : 535-558. doi: 10.3934/dcdsb.2006.6.535 |
[12] |
Galina Kurina, Sahlar Meherrem. Decomposition of discrete linear-quadratic optimal control problems for switching systems. Conference Publications, 2015, 2015 (special) : 764-774. doi: 10.3934/proc.2015.0764 |
[13] |
Le Viet Cuong, Thai Son Doan. Assignability of dichotomy spectra for discrete time-varying linear control systems. Discrete and Continuous Dynamical Systems - B, 2020, 25 (9) : 3597-3607. doi: 10.3934/dcdsb.2020074 |
[14] |
Haijun Sun, Xinquan Zhang. Guaranteed cost control of discrete-time switched saturated systems. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4515-4522. doi: 10.3934/dcdsb.2020300 |
[15] |
Anthony M. Bloch, Peter E. Crouch, Nikolaj Nordkvist. Continuous and discrete embedded optimal control problems and their application to the analysis of Clebsch optimal control problems and mechanical systems. Journal of Geometric Mechanics, 2013, 5 (1) : 1-38. doi: 10.3934/jgm.2013.5.1 |
[16] |
José Ignacio Tello. Mathematical analysis of a model of morphogenesis. Discrete and Continuous Dynamical Systems, 2009, 25 (1) : 343-361. doi: 10.3934/dcds.2009.25.343 |
[17] |
Elena Izquierdo-Kulich, Margarita Amigó de Quesada, Carlos Manuel Pérez-Amor, José Manuel Nieto-Villar. Morphogenesis and aggressiveness of cervix carcinoma. Mathematical Biosciences & Engineering, 2011, 8 (4) : 987-997. doi: 10.3934/mbe.2011.8.987 |
[18] |
Elena Izquierdo-Kulich, José Manuel Nieto-Villar. Morphogenesis of the tumor patterns. Mathematical Biosciences & Engineering, 2008, 5 (2) : 299-313. doi: 10.3934/mbe.2008.5.299 |
[19] |
Byungik Kahng, Miguel Mendes. The characterization of maximal invariant sets of non-linear discrete-time control dynamical systems. Conference Publications, 2013, 2013 (special) : 393-406. doi: 10.3934/proc.2013.2013.393 |
[20] |
Elena K. Kostousova. On polyhedral control synthesis for dynamical discrete-time systems under uncertainties and state constraints. Discrete and Continuous Dynamical Systems, 2018, 38 (12) : 6149-6162. doi: 10.3934/dcds.2018153 |
2021 Impact Factor: 1.41
Tools
Metrics
Other articles
by authors
[Back to Top]