March  2019, 14(1): 79-100. doi: 10.3934/nhm.2019005

A case study of optimal input-output system with sampled-data control: Ding et al. force and fatigue muscular control model

1. 

Le2i Laboratory EA 7508, Dijon, France

2. 

Univ. Bourgogne Franche-Comté and INRIA Sophia Antipolis, Dijon, France

3. 

Univ. Bourgogne Franche-Comté and EPF École Ingénieur-e-s, Troyes, France

* Corresponding author: Jérémy Rouot

Received  April 2018 Published  January 2019

The objective of this article is to make the analysis of the muscular force response to optimize electrical pulses train using Ding et al. force-fatigue model. A geometric analysis of the dynamics is provided and very preliminary results are presented in the frame of optimal control using a simplified input-output model. In parallel, to take into account the physical constraints of the problem, partial state observation and input restrictions, an optimized pulses train is computed with a model predictive control, where a non-linear observer is used to estimate the state-variables.

Citation: Toufik Bakir, Bernard Bonnard, Jérémy Rouot. A case study of optimal input-output system with sampled-data control: Ding et al. force and fatigue muscular control model. Networks & Heterogeneous Media, 2019, 14 (1) : 79-100. doi: 10.3934/nhm.2019005
References:
[1]

T. Bakir, B. Bonnard and S. Othman, Predictive control based on non-linear observer for muscular force and fatigue model, Annual American Control Conference (ACC), Milwaukee (2018) 2157-2162. doi: 10.23919/ACC.2018.8430962.  Google Scholar

[2]

J. Bobet and R. B. Stein, A simple model of force generation by skeletal muscle during dynamic isometric contractions, IEEE Transactions on Biomedical Engineering, 45 (1998), 1010-1016.  doi: 10.1109/10.704869.  Google Scholar

[3]

L. Bourdin and E. Trélat, Optimal sampled-data control, and generalizations on time scales, Math. Cont. Related Fields, 6 (2016), 53-94.  doi: 10.3934/mcrf.2016.6.53.  Google Scholar

[4] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004.  doi: 10.1017/CBO9780511804441.  Google Scholar
[5]

C. R. Cutler and B. L. Ramaker, Dynamic Matrix Control: A Computer Control Algorithm, In Joint automatic control conference, San Francisco, 1981. Google Scholar

[6]

J. DingS. A. Binder-Macleod and A. S. Wexler, Two-step, predictive, isometric force model tested on data from human and rat muscles, J. Appl. Physiol., 85 (1998), 2176-2189.  doi: 10.1152/jappl.1998.85.6.2176.  Google Scholar

[7]

J. DingA. S. Wexler and S. A. Binder-Macleod, Development of a mathematical model that predicts optimal muscle activation patterns by using brief trains, J. Appl. Physiol., 88 (2000), 917-925.  doi: 10.1152/jappl.2000.88.3.917.  Google Scholar

[8]

J. DingA. S. Wexler and S. A. Binder-Macleod, A predictive model of fatigue in human skeletal muscles, J. Appl. Physiol., 89 (2000), 1322-1332.  doi: 10.1152/jappl.2000.89.4.1322.  Google Scholar

[9]

J. DingA. S. Wexler and S. A. Binder-Macleod, Mathematical models for fatigue minimization during functional electrical stimulation, J. Electromyogr. Kinesiol., 13 (2003), 575-588.  doi: 10.1016/S1050-6411(03)00102-0.  Google Scholar

[10]

R. Fletcher, Practical Methods of Optimization, A Wiley-Interscience Publication. John Wiley & Sons, Second edition., Ltd., Chichester, 1987.  Google Scholar

[11]

J. P. GauthierH. Hammouri and S. Othman, A simple observer for non-linear systems Application to bioreactors, IEEE Trans. Automat. Control, 37 (1992), 875-880.  doi: 10.1109/9.256352.  Google Scholar

[12]

R. GesztelyiJ. ZsugaA. Kemeny-BekeB. VargaB. Juhasz and A. Tosaki, The Hill equation and the origin of quantitative pharmacology, Arch. Hist. Exact Sci., 66 (2012), 427-438.  doi: 10.1007/s00407-012-0098-5.  Google Scholar

[13]

R. Hermann and J. Krener, Non-linear controllability and observability, IEEE Transactions on Automatic Control, AC-22 (1977), 728-740.  doi: 10.1109/tac.1977.1101601.  Google Scholar

[14]

A. Isidori, Non-linear Control Systems, 3rd ed. Berlin, Germany: Springer-Verlag, 1995. doi: 10.1007/978-1-84628-615-5.  Google Scholar

[15]

L. F. Law and R. Shields, Mathematical models of human paralyzed muscle after long-term training, Journal of Biomechanics, 40 (2007), 2587-2595.   Google Scholar

[16]

S. Li, K. Y. Lim and D. G. Fisher, A state space formulation for model predictive control, Springer, New York, 35 (1989), 241-249. doi: 10.1002/aic.690350208.  Google Scholar

[17]

J. Richalet, A. Rault, J. L. Testud and J. Papon, Model algorithmic control of industrial processes, In IFAC Proceedings, 10 (1977), 103–120. doi: 10.1016/S1474-6670(17)69513-2.  Google Scholar

[18]

H. J. Sussmann and V. Jurdjevic, Controllability of non-linear systems, J. Differential Equations, 12 (1972), 95-116.  doi: 10.1016/0022-0396(72)90007-1.  Google Scholar

[19]

L. Wang, Model Predictive Control System Design and Implementation Using MATLAB, Springer, London, 2009. Google Scholar

[20]

E. Wilson, Force Response of Locust Skeletal Muscle, Southampton University, Ph.D. thesis, 2011. Google Scholar

show all references

References:
[1]

T. Bakir, B. Bonnard and S. Othman, Predictive control based on non-linear observer for muscular force and fatigue model, Annual American Control Conference (ACC), Milwaukee (2018) 2157-2162. doi: 10.23919/ACC.2018.8430962.  Google Scholar

[2]

J. Bobet and R. B. Stein, A simple model of force generation by skeletal muscle during dynamic isometric contractions, IEEE Transactions on Biomedical Engineering, 45 (1998), 1010-1016.  doi: 10.1109/10.704869.  Google Scholar

[3]

L. Bourdin and E. Trélat, Optimal sampled-data control, and generalizations on time scales, Math. Cont. Related Fields, 6 (2016), 53-94.  doi: 10.3934/mcrf.2016.6.53.  Google Scholar

[4] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004.  doi: 10.1017/CBO9780511804441.  Google Scholar
[5]

C. R. Cutler and B. L. Ramaker, Dynamic Matrix Control: A Computer Control Algorithm, In Joint automatic control conference, San Francisco, 1981. Google Scholar

[6]

J. DingS. A. Binder-Macleod and A. S. Wexler, Two-step, predictive, isometric force model tested on data from human and rat muscles, J. Appl. Physiol., 85 (1998), 2176-2189.  doi: 10.1152/jappl.1998.85.6.2176.  Google Scholar

[7]

J. DingA. S. Wexler and S. A. Binder-Macleod, Development of a mathematical model that predicts optimal muscle activation patterns by using brief trains, J. Appl. Physiol., 88 (2000), 917-925.  doi: 10.1152/jappl.2000.88.3.917.  Google Scholar

[8]

J. DingA. S. Wexler and S. A. Binder-Macleod, A predictive model of fatigue in human skeletal muscles, J. Appl. Physiol., 89 (2000), 1322-1332.  doi: 10.1152/jappl.2000.89.4.1322.  Google Scholar

[9]

J. DingA. S. Wexler and S. A. Binder-Macleod, Mathematical models for fatigue minimization during functional electrical stimulation, J. Electromyogr. Kinesiol., 13 (2003), 575-588.  doi: 10.1016/S1050-6411(03)00102-0.  Google Scholar

[10]

R. Fletcher, Practical Methods of Optimization, A Wiley-Interscience Publication. John Wiley & Sons, Second edition., Ltd., Chichester, 1987.  Google Scholar

[11]

J. P. GauthierH. Hammouri and S. Othman, A simple observer for non-linear systems Application to bioreactors, IEEE Trans. Automat. Control, 37 (1992), 875-880.  doi: 10.1109/9.256352.  Google Scholar

[12]

R. GesztelyiJ. ZsugaA. Kemeny-BekeB. VargaB. Juhasz and A. Tosaki, The Hill equation and the origin of quantitative pharmacology, Arch. Hist. Exact Sci., 66 (2012), 427-438.  doi: 10.1007/s00407-012-0098-5.  Google Scholar

[13]

R. Hermann and J. Krener, Non-linear controllability and observability, IEEE Transactions on Automatic Control, AC-22 (1977), 728-740.  doi: 10.1109/tac.1977.1101601.  Google Scholar

[14]

A. Isidori, Non-linear Control Systems, 3rd ed. Berlin, Germany: Springer-Verlag, 1995. doi: 10.1007/978-1-84628-615-5.  Google Scholar

[15]

L. F. Law and R. Shields, Mathematical models of human paralyzed muscle after long-term training, Journal of Biomechanics, 40 (2007), 2587-2595.   Google Scholar

[16]

S. Li, K. Y. Lim and D. G. Fisher, A state space formulation for model predictive control, Springer, New York, 35 (1989), 241-249. doi: 10.1002/aic.690350208.  Google Scholar

[17]

J. Richalet, A. Rault, J. L. Testud and J. Papon, Model algorithmic control of industrial processes, In IFAC Proceedings, 10 (1977), 103–120. doi: 10.1016/S1474-6670(17)69513-2.  Google Scholar

[18]

H. J. Sussmann and V. Jurdjevic, Controllability of non-linear systems, J. Differential Equations, 12 (1972), 95-116.  doi: 10.1016/0022-0396(72)90007-1.  Google Scholar

[19]

L. Wang, Model Predictive Control System Design and Implementation Using MATLAB, Springer, London, 2009. Google Scholar

[20]

E. Wilson, Force Response of Locust Skeletal Muscle, Southampton University, Ph.D. thesis, 2011. Google Scholar

Figure 1.  Time evolution of the permanent control (thin continuous line) and sampled-data control for several values of the sampling period $ T_s\in \{T/20, T/40, T/200\} $
Figure 2.  Evolution of $ K_m $ for different initial conditions (case of $ I = 10ms $)
Figure 3.  Relative error of the force for a well known and erroneous $ K_m $ initial condition (case of $ I = 10ms $)
Figure 4.  General MPC strategy diagram
Figure 5.  (left half plane) $ E_s $ and force profile for applied amplitude and interpulse stimulation, (right half plane) Predicted $ E_s $ and force using single move strategy to be optimized
Figure 6.  Evolution of $ A $ and $ \hat{A} $ for $ I = 10 $, $ 30\% $ error of $ K_m $
Figure 7.  Evolution of $ A $ and $ \hat{A} $ for $ I = 25 $, $ 30\% $ error of $ K_m $
Figure 8.  Evolution of $ \tau_1 $ and $ \hat{\tau_1} $ for $ I = 10 $, $ 30\% $ error of $ K_m $
Figure 9.  Evolution of $ \tau_1 $ and $ \hat{\tau_1} $ for $ I = 25 $, $ 30\% $ error of $ K_m $
Figure 10.  Evolution of $ F $, $ \hat{F} $ and $ F $ mean value over $ I $ for $ I = 25 $, $ 30\% $ error of $ K_m $, $ Fref = 250N $
Figure 11.  Evolution of the force for a reference force of $ 425N $ and different receding horizons $ (3, 5 $ and $ 10) $
Figure 12.  Evolution of the interpulse (control) for a reference force of $ 425N $ and a preditive horizon of $ 10 $
Figure 13.  Evolution of the amplitude (control) for a reference force of $ 425N $ and a preditive horizon of $ 10 $
Figure 14.  Evolution of the interpulse (control) for a reference force of 425N and a preditive horizon of 10
Figure 15.  Evolution of the amplitude (control) for a reference force of 425N and a preditive horizon of 3
Table 1.  Margin settings
Symbol Unit Value description
$ C_{N} $ Normalized amount of
$ Ca^{2+} $-troponin complex
$ F $ $ N $ Force generated by muscle
$ t_{i} $ $ ms $ Time of the $ i^{th} $ pulse
$ n $ Total number of
the pulses before time $ t $
$ i $ Stimulation pulse index
$ \tau_{c} $ $ ms $ $ 20 $ Time constant that commands
the rise and the decay of $ C_{N} $
$ R_{0} $ $ 1.143 $ Term of the enhancement
in $ C_{N} $ from successive stimuli
$ A $ $ \frac{N}{ms} $ Scaling factor for the force and
the shortening velocity
of muscle
$ \tau_{1} $ $ ms $ Force decline time constant
when strongly bound
cross-bridges absent
$ \tau_{2} $ $ ms $ $ 124.4 $ Force decline time constant
due to friction between actin
and myosin
$ K_{m} $ Sensitivity of strongly bound
cross-bridges to $ C_{N} $
$ A_{rest} $ $ \frac{N}{ms} $ $ 3.009 $ Value of the variable $ A $
when muscle is not fatigued
$ K_{m, rest} $ $ 0.103 $ Value of the variable $ K_{m} $
when muscle is not fatigued
$ \tau_{1, rest} $ $ ms $ $ 50.95 $ The value of the variable $ \tau_{1} $
when muscle is not fatigued
$ \alpha_{A} $ $ \frac{1}{ms^{2}} $ $ -4.0 10^{-7} $ Coefficient for the force-model
variable $ A $ in the fatigue
model
$ \alpha_{K_{m}} $ $ \frac{1}{msN} $ $ 1.9 10 ^{-8} $ Coefficient for the force-model
variable $ K_{m} $ in the fatigue
model
$ \alpha_{\tau_{1}} $ $ \frac{1}{N} $ $ 2.1 10^{-5} $ Coefficient for force-model
variable $ \tau_{1} $ in the fatigue
model
$ \tau_{fat} $ $ s $ $ 127 $ Time constant controlling the
recovery of $ (A, K_{m}, \tau_{1}) $
Symbol Unit Value description
$ C_{N} $ Normalized amount of
$ Ca^{2+} $-troponin complex
$ F $ $ N $ Force generated by muscle
$ t_{i} $ $ ms $ Time of the $ i^{th} $ pulse
$ n $ Total number of
the pulses before time $ t $
$ i $ Stimulation pulse index
$ \tau_{c} $ $ ms $ $ 20 $ Time constant that commands
the rise and the decay of $ C_{N} $
$ R_{0} $ $ 1.143 $ Term of the enhancement
in $ C_{N} $ from successive stimuli
$ A $ $ \frac{N}{ms} $ Scaling factor for the force and
the shortening velocity
of muscle
$ \tau_{1} $ $ ms $ Force decline time constant
when strongly bound
cross-bridges absent
$ \tau_{2} $ $ ms $ $ 124.4 $ Force decline time constant
due to friction between actin
and myosin
$ K_{m} $ Sensitivity of strongly bound
cross-bridges to $ C_{N} $
$ A_{rest} $ $ \frac{N}{ms} $ $ 3.009 $ Value of the variable $ A $
when muscle is not fatigued
$ K_{m, rest} $ $ 0.103 $ Value of the variable $ K_{m} $
when muscle is not fatigued
$ \tau_{1, rest} $ $ ms $ $ 50.95 $ The value of the variable $ \tau_{1} $
when muscle is not fatigued
$ \alpha_{A} $ $ \frac{1}{ms^{2}} $ $ -4.0 10^{-7} $ Coefficient for the force-model
variable $ A $ in the fatigue
model
$ \alpha_{K_{m}} $ $ \frac{1}{msN} $ $ 1.9 10 ^{-8} $ Coefficient for the force-model
variable $ K_{m} $ in the fatigue
model
$ \alpha_{\tau_{1}} $ $ \frac{1}{N} $ $ 2.1 10^{-5} $ Coefficient for force-model
variable $ \tau_{1} $ in the fatigue
model
$ \tau_{fat} $ $ s $ $ 127 $ Time constant controlling the
recovery of $ (A, K_{m}, \tau_{1}) $
[1]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2021, 13 (1) : 1-23. doi: 10.3934/jgm.2020032

[2]

Lars Grüne, Luca Mechelli, Simon Pirkelmann, Stefan Volkwein. Performance estimates for economic model predictive control and their application in proper orthogonal decomposition-based implementations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021013

[3]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[4]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[5]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[6]

A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909

[7]

Jaouad Danane. Optimal control of viral infection model with saturated infection rate. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 363-375. doi: 10.3934/naco.2020031

[8]

Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3273-3293. doi: 10.3934/dcds.2020405

[9]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[10]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[11]

Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1

[12]

Andrea Signori. Penalisation of long treatment time and optimal control of a tumour growth model of Cahn–Hilliard type with singular potential. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2519-2542. doi: 10.3934/dcds.2020373

[13]

Mostafa Ghelichi, A. M. Goltabar, H. R. Tavakoli, A. Karamodin. Neuro-fuzzy active control optimized by Tug of war optimization method for seismically excited benchmark highway bridge. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 333-351. doi: 10.3934/naco.2020029

[14]

Vladimir Gaitsgory, Ilya Shvartsman. Linear programming estimates for Cesàro and Abel limits of optimal values in optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021102

[15]

Umberto Biccari. Internal control for a non-local Schrödinger equation involving the fractional Laplace operator. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021014

[16]

Miroslav Bulíček, Victoria Patel, Endre Süli, Yasemin Şengül. Existence of large-data global weak solutions to a model of a strain-limiting viscoelastic body. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021053

[17]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[18]

Kehan Si, Zhenda Xu, Ka Fai Cedric Yiu, Xun Li. Open-loop solvability for mean-field stochastic linear quadratic optimal control problems of Markov regime-switching system. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021074

[19]

Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313

[20]

Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023

2019 Impact Factor: 1.053

Metrics

  • PDF downloads (164)
  • HTML views (245)
  • Cited by (1)

Other articles
by authors

[Back to Top]