[1]
|
T. Bakir, B. Bonnard and S. Othman, Predictive control based on non-linear observer for muscular force and fatigue model, Annual American Control Conference (ACC), Milwaukee (2018) 2157-2162.
doi: 10.23919/ACC.2018.8430962.
|
[2]
|
J. Bobet and R. B. Stein, A simple model of force generation by skeletal muscle during dynamic isometric contractions, IEEE Transactions on Biomedical Engineering, 45 (1998), 1010-1016.
doi: 10.1109/10.704869.
|
[3]
|
L. Bourdin and E. Trélat, Optimal sampled-data control, and generalizations on time scales, Math. Cont. Related Fields, 6 (2016), 53-94.
doi: 10.3934/mcrf.2016.6.53.
|
[4]
|
S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004.
doi: 10.1017/CBO9780511804441.
|
[5]
|
C. R. Cutler and B. L. Ramaker, Dynamic Matrix Control: A Computer Control Algorithm, In Joint automatic control conference, San Francisco, 1981.
|
[6]
|
J. Ding, S. A. Binder-Macleod and A. S. Wexler, Two-step, predictive, isometric force model tested on data from human and rat muscles, J. Appl. Physiol., 85 (1998), 2176-2189.
doi: 10.1152/jappl.1998.85.6.2176.
|
[7]
|
J. Ding, A. S. Wexler and S. A. Binder-Macleod, Development of a mathematical model that predicts optimal muscle activation patterns by using brief trains, J. Appl. Physiol., 88 (2000), 917-925.
doi: 10.1152/jappl.2000.88.3.917.
|
[8]
|
J. Ding, A. S. Wexler and S. A. Binder-Macleod, A predictive model of fatigue in human skeletal muscles, J. Appl. Physiol., 89 (2000), 1322-1332.
doi: 10.1152/jappl.2000.89.4.1322.
|
[9]
|
J. Ding, A. S. Wexler and S. A. Binder-Macleod, Mathematical models for fatigue minimization during functional electrical stimulation, J. Electromyogr. Kinesiol., 13 (2003), 575-588.
doi: 10.1016/S1050-6411(03)00102-0.
|
[10]
|
R. Fletcher, Practical Methods of Optimization, A Wiley-Interscience Publication. John Wiley & Sons, Second edition., Ltd., Chichester, 1987.
|
[11]
|
J. P. Gauthier, H. Hammouri and S. Othman, A simple observer for non-linear systems Application to bioreactors, IEEE Trans. Automat. Control, 37 (1992), 875-880.
doi: 10.1109/9.256352.
|
[12]
|
R. Gesztelyi, J. Zsuga, A. Kemeny-Beke, B. Varga, B. Juhasz and A. Tosaki, The Hill equation and the origin of quantitative pharmacology, Arch. Hist. Exact Sci., 66 (2012), 427-438.
doi: 10.1007/s00407-012-0098-5.
|
[13]
|
R. Hermann and J. Krener, Non-linear controllability and observability, IEEE Transactions on Automatic Control, AC-22 (1977), 728-740.
doi: 10.1109/tac.1977.1101601.
|
[14]
|
A. Isidori, Non-linear Control Systems, 3rd ed. Berlin, Germany: Springer-Verlag, 1995.
doi: 10.1007/978-1-84628-615-5.
|
[15]
|
L. F. Law and R. Shields, Mathematical models of human paralyzed muscle after long-term training, Journal of Biomechanics, 40 (2007), 2587-2595.
|
[16]
|
S. Li, K. Y. Lim and D. G. Fisher, A state space formulation for model predictive control, Springer, New York, 35 (1989), 241-249.
doi: 10.1002/aic.690350208.
|
[17]
|
J. Richalet, A. Rault, J. L. Testud and J. Papon, Model algorithmic control of industrial processes, In IFAC Proceedings, 10 (1977), 103–120.
doi: 10.1016/S1474-6670(17)69513-2.
|
[18]
|
H. J. Sussmann and V. Jurdjevic, Controllability of non-linear systems, J. Differential Equations, 12 (1972), 95-116.
doi: 10.1016/0022-0396(72)90007-1.
|
[19]
|
L. Wang, Model Predictive Control System Design and Implementation Using MATLAB, Springer, London, 2009.
|
[20]
|
E. Wilson, Force Response of Locust Skeletal Muscle, Southampton University, Ph.D. thesis, 2011.
|