\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A case study of optimal input-output system with sampled-data control: Ding et al. force and fatigue muscular control model

  • * Corresponding author: Jérémy Rouot

    * Corresponding author: Jérémy Rouot
Abstract Full Text(HTML) Figure(15) / Table(1) Related Papers Cited by
  • The objective of this article is to make the analysis of the muscular force response to optimize electrical pulses train using Ding et al. force-fatigue model. A geometric analysis of the dynamics is provided and very preliminary results are presented in the frame of optimal control using a simplified input-output model. In parallel, to take into account the physical constraints of the problem, partial state observation and input restrictions, an optimized pulses train is computed with a model predictive control, where a non-linear observer is used to estimate the state-variables.

    Mathematics Subject Classification: 49K15, 93B07, 92B05.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Time evolution of the permanent control (thin continuous line) and sampled-data control for several values of the sampling period $ T_s\in \{T/20, T/40, T/200\} $

    Figure 2.  Evolution of $ K_m $ for different initial conditions (case of $ I = 10ms $)

    Figure 3.  Relative error of the force for a well known and erroneous $ K_m $ initial condition (case of $ I = 10ms $)

    Figure 4.  General MPC strategy diagram

    Figure 5.  (left half plane) $ E_s $ and force profile for applied amplitude and interpulse stimulation, (right half plane) Predicted $ E_s $ and force using single move strategy to be optimized

    Figure 6.  Evolution of $ A $ and $ \hat{A} $ for $ I = 10 $, $ 30\% $ error of $ K_m $

    Figure 7.  Evolution of $ A $ and $ \hat{A} $ for $ I = 25 $, $ 30\% $ error of $ K_m $

    Figure 8.  Evolution of $ \tau_1 $ and $ \hat{\tau_1} $ for $ I = 10 $, $ 30\% $ error of $ K_m $

    Figure 9.  Evolution of $ \tau_1 $ and $ \hat{\tau_1} $ for $ I = 25 $, $ 30\% $ error of $ K_m $

    Figure 10.  Evolution of $ F $, $ \hat{F} $ and $ F $ mean value over $ I $ for $ I = 25 $, $ 30\% $ error of $ K_m $, $ Fref = 250N $

    Figure 11.  Evolution of the force for a reference force of $ 425N $ and different receding horizons $ (3, 5 $ and $ 10) $

    Figure 12.  Evolution of the interpulse (control) for a reference force of $ 425N $ and a preditive horizon of $ 10 $

    Figure 13.  Evolution of the amplitude (control) for a reference force of $ 425N $ and a preditive horizon of $ 10 $

    Figure 14.  Evolution of the interpulse (control) for a reference force of 425N and a preditive horizon of 10

    Figure 15.  Evolution of the amplitude (control) for a reference force of 425N and a preditive horizon of 3

    Table 1.  Margin settings

    Symbol Unit Value description
    $ C_{N} $ Normalized amount of
    $ Ca^{2+} $-troponin complex
    $ F $ $ N $ Force generated by muscle
    $ t_{i} $ $ ms $ Time of the $ i^{th} $ pulse
    $ n $ Total number of
    the pulses before time $ t $
    $ i $ Stimulation pulse index
    $ \tau_{c} $ $ ms $ $ 20 $ Time constant that commands
    the rise and the decay of $ C_{N} $
    $ R_{0} $ $ 1.143 $ Term of the enhancement
    in $ C_{N} $ from successive stimuli
    $ A $ $ \frac{N}{ms} $ Scaling factor for the force and
    the shortening velocity
    of muscle
    $ \tau_{1} $ $ ms $ Force decline time constant
    when strongly bound
    cross-bridges absent
    $ \tau_{2} $ $ ms $ $ 124.4 $ Force decline time constant
    due to friction between actin
    and myosin
    $ K_{m} $ Sensitivity of strongly bound
    cross-bridges to $ C_{N} $
    $ A_{rest} $ $ \frac{N}{ms} $ $ 3.009 $ Value of the variable $ A $
    when muscle is not fatigued
    $ K_{m, rest} $ $ 0.103 $ Value of the variable $ K_{m} $
    when muscle is not fatigued
    $ \tau_{1, rest} $ $ ms $ $ 50.95 $ The value of the variable $ \tau_{1} $
    when muscle is not fatigued
    $ \alpha_{A} $ $ \frac{1}{ms^{2}} $ $ -4.0 10^{-7} $ Coefficient for the force-model
    variable $ A $ in the fatigue
    model
    $ \alpha_{K_{m}} $ $ \frac{1}{msN} $ $ 1.9 10 ^{-8} $ Coefficient for the force-model
    variable $ K_{m} $ in the fatigue
    model
    $ \alpha_{\tau_{1}} $ $ \frac{1}{N} $ $ 2.1 10^{-5} $ Coefficient for force-model
    variable $ \tau_{1} $ in the fatigue
    model
    $ \tau_{fat} $ $ s $ $ 127 $ Time constant controlling the
    recovery of $ (A, K_{m}, \tau_{1}) $
     | Show Table
    DownLoad: CSV
  • [1] T. Bakir, B. Bonnard and S. Othman, Predictive control based on non-linear observer for muscular force and fatigue model, Annual American Control Conference (ACC), Milwaukee (2018) 2157-2162. doi: 10.23919/ACC.2018.8430962.
    [2] J. Bobet and R. B. Stein, A simple model of force generation by skeletal muscle during dynamic isometric contractions, IEEE Transactions on Biomedical Engineering, 45 (1998), 1010-1016.  doi: 10.1109/10.704869.
    [3] L. Bourdin and E. Trélat, Optimal sampled-data control, and generalizations on time scales, Math. Cont. Related Fields, 6 (2016), 53-94.  doi: 10.3934/mcrf.2016.6.53.
    [4] S. Boyd and  L. VandenbergheConvex Optimization, Cambridge University Press, 2004.  doi: 10.1017/CBO9780511804441.
    [5] C. R. Cutler and B. L. Ramaker, Dynamic Matrix Control: A Computer Control Algorithm, In Joint automatic control conference, San Francisco, 1981.
    [6] J. DingS. A. Binder-Macleod and A. S. Wexler, Two-step, predictive, isometric force model tested on data from human and rat muscles, J. Appl. Physiol., 85 (1998), 2176-2189.  doi: 10.1152/jappl.1998.85.6.2176.
    [7] J. DingA. S. Wexler and S. A. Binder-Macleod, Development of a mathematical model that predicts optimal muscle activation patterns by using brief trains, J. Appl. Physiol., 88 (2000), 917-925.  doi: 10.1152/jappl.2000.88.3.917.
    [8] J. DingA. S. Wexler and S. A. Binder-Macleod, A predictive model of fatigue in human skeletal muscles, J. Appl. Physiol., 89 (2000), 1322-1332.  doi: 10.1152/jappl.2000.89.4.1322.
    [9] J. DingA. S. Wexler and S. A. Binder-Macleod, Mathematical models for fatigue minimization during functional electrical stimulation, J. Electromyogr. Kinesiol., 13 (2003), 575-588.  doi: 10.1016/S1050-6411(03)00102-0.
    [10] R. Fletcher, Practical Methods of Optimization, A Wiley-Interscience Publication. John Wiley & Sons, Second edition., Ltd., Chichester, 1987.
    [11] J. P. GauthierH. Hammouri and S. Othman, A simple observer for non-linear systems Application to bioreactors, IEEE Trans. Automat. Control, 37 (1992), 875-880.  doi: 10.1109/9.256352.
    [12] R. GesztelyiJ. ZsugaA. Kemeny-BekeB. VargaB. Juhasz and A. Tosaki, The Hill equation and the origin of quantitative pharmacology, Arch. Hist. Exact Sci., 66 (2012), 427-438.  doi: 10.1007/s00407-012-0098-5.
    [13] R. Hermann and J. Krener, Non-linear controllability and observability, IEEE Transactions on Automatic Control, AC-22 (1977), 728-740.  doi: 10.1109/tac.1977.1101601.
    [14] A. Isidori, Non-linear Control Systems, 3rd ed. Berlin, Germany: Springer-Verlag, 1995. doi: 10.1007/978-1-84628-615-5.
    [15] L. F. Law and R. Shields, Mathematical models of human paralyzed muscle after long-term training, Journal of Biomechanics, 40 (2007), 2587-2595. 
    [16] S. Li, K. Y. Lim and D. G. Fisher, A state space formulation for model predictive control, Springer, New York, 35 (1989), 241-249. doi: 10.1002/aic.690350208.
    [17] J. Richalet, A. Rault, J. L. Testud and J. Papon, Model algorithmic control of industrial processes, In IFAC Proceedings, 10 (1977), 103–120. doi: 10.1016/S1474-6670(17)69513-2.
    [18] H. J. Sussmann and V. Jurdjevic, Controllability of non-linear systems, J. Differential Equations, 12 (1972), 95-116.  doi: 10.1016/0022-0396(72)90007-1.
    [19] L. Wang, Model Predictive Control System Design and Implementation Using MATLAB, Springer, London, 2009.
    [20] E. Wilson, Force Response of Locust Skeletal Muscle, Southampton University, Ph.D. thesis, 2011.
  • 加载中

Figures(15)

Tables(1)

SHARE

Article Metrics

HTML views(618) PDF downloads(357) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return