March  2019, 14(1): 149-171. doi: 10.3934/nhm.2019008

Steady distribution of the incremental model for bacteria proliferation

1. 

Laboratoire de Mathématiques de Versailles, UVSQ, CNRS, Université Paris-Saclay, 45 Avenue des États-Unis, 78035 Versailles cedex, France

2. 

Laboratoire Jacques-Louis Lions, CNRS UMR 7598, Sorbonne université, 4 place Jussieu, 75005 Paris, France

* Corresponding author: hugo.martin@sorbonne-universite.fr

Received  March 2018 Published  January 2019

Fund Project: P. Gabriel has been supported by the ANR project KIBORD, ANR-13-BS01-0004, funded by the French Ministry of Research. H. Martin has been supported by the ERC Starting Grant SKIPPERAD (number 306321).

We study the mathematical properties of a model of cell division structured by two variables – the size and the size increment – in the case of a linear growth rate and a self-similar fragmentation kernel. We first show that one can construct a solution to the related two dimensional eigenproblem associated to the eigenvalue $ 1 $ from a solution of a certain one dimensional fixed point problem. Then we prove the existence and uniqueness of this fixed point in the appropriate $ {\rm{L}} ^1 $ weighted space under general hypotheses on the division rate. Knowing such an eigenfunction proves useful as a first step in studying the long time asymptotic behaviour of the Cauchy problem.

Citation: Pierre Gabriel, Hugo Martin. Steady distribution of the incremental model for bacteria proliferation. Networks and Heterogeneous Media, 2019, 14 (1) : 149-171. doi: 10.3934/nhm.2019008
References:
[1]

G. I. Bell and E. C. Anderson, Cell growth and division: Ⅰ. a mathematical model with applications to cell volume distributions in mammalian suspension cultures, Biophysical Journal, 7 (1967), 329-351. 

[2]

E. Bernard, M. Doumic and P. Gabriel, Cyclic asymptotic behaviour of a population reproducing by fission into two equal parts, Kinetic Related Models, to appear, arXiv: 1609.03846.

[3]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext. Springer, New York, 2011.

[4]

M. J. Cáceres, J. A. Cañizo and S. Mischler, Rate of convergence to an asymptotic profile for the self-similar fragmentation and growth-fragmentation equations, J. Math. Pures Appl. (9), 96 (2011), 334–362. doi: 10.1016/j.matpur.2011.01.003.

[5]

B. de Pagter, Irreducible compact operators, Math. Z., 192 (1986), 149-153.  doi: 10.1007/BF01162028.

[6]

M. Doumic, Analysis of a population model structured by the cells molecular content, Math. Model. Nat. Phenom., 2 (2007), 121-152.  doi: 10.1051/mmnp:2007006.

[7]

M. DoumicM. HoffmannN. Krell and L. Robert, Statistical estimation of a growth-fragmentation model observed on a genealogical tree, Bernoulli, 21 (2015), 1760-1799.  doi: 10.3150/14-BEJ623.

[8]

M. Doumic Jauffret and P. Gabriel, Eigenelements of a general aggregation-fragmentation model, Math. Models Methods Appl. Sci., 20 (2010), 757-783.  doi: 10.1142/S021820251000443X.

[9]

Y. Du, Order structure and topological methods in nonlinear partial differential equations, Vol. 1. Maximum principles and applications, Series in Partial Differential Equations and Applications. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2006. Maximum principles and applications.

[10]

A. J. HallG. C. Wake and P. W. Gandar, Steady size distributions for cells in one-dimensional plant tissues, J. Math. Biol., 30 (1991), 101-123.  doi: 10.1007/BF00160330.

[11]

M. Lerch, Sur un point de la théorie des fonctions géné ratrices d'Abel, Acta Math., 27 (1903), 339-351.  doi: 10.1007/BF02421315.

[12]

J. A. J. Metz and O. Diekmann, editors, The Dynamics of Physiologically Structured Populations, volume 68 of Lecture Notes in Biomathematics, Springer-Verlag, Berlin, 1986. doi: 10.1007/978-3-662-13159-6.

[13]

P. MichelS. Mischler and B. Perthame, General entropy equations for structured population models and scattering, C. R., Math., Acad. Sci. Paris, 338 (2004), 697-702.  doi: 10.1016/j.crma.2004.03.006.

[14]

P. Michel, S. Mischler and B. Perthame, General relative entropy inequality: An illustration on growth models, J. Math. Pures Appl. (9), 84 (2005), 1235–1260. doi: 10.1016/j.matpur.2005.04.001.

[15]

S. MischlerB. Perthame and L. Ryzhik, Stability in a nonlinear population maturation model, Math. Models Methods Appl. Sci., 12 (2002), 1751-1772.  doi: 10.1142/S021820250200232X.

[16]

S. Mischler and J. Scher, Spectral analysis of semigroups and growth-fragmentation equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 33 (2016), 849-898.  doi: 10.1016/j.anihpc.2015.01.007.

[17]

A. Olivier, How does variability in cells aging and growth rates influence the malthus parameter?, Kinetic and Related Models, 10 (2017), 481-512.  doi: 10.3934/krm.2017019.

[18]

B. Perthame, Transport Equations in Biology, Frontiers in Mathematics. Birkhäuser Verlag, Basel, 2007.

[19]

B. Perthame and L. Ryzhik, Exponential decay for the fragmentation or cell-division equation, J. Differential Equations, 210 (2005), 155-177.  doi: 10.1016/j.jde.2004.10.018.

[20]

J. D. F. Richard L. Burden, Numerical Analysis, Boston, MA: PWS Publishing Company; London: ITP International Thomson Publishing, 5th ed. edition, 1993.

[21]

M. Rotenberg, Transport theory for growing cell populations, J. Theoret. Biol., 103 (1983), 181-199.  doi: 10.1016/0022-5193(83)90024-3.

[22]

J. T. SaulsD. Li and S. Jun, Adder and a coarse-grained approach to cell size homeostasis in bacteria, Current Opinion in Cell Biology, 38 (2016), 38-44.  doi: 10.1016/j.ceb.2016.02.004.

[23]

H. H. Schaefer, Banach Lattices and Positive Operators, Springer-Verlag, New York-Heidelberg, 1974.

[24]

J. W. Sinko and W. Streifer, A new model for age-size structure of a population, Ecology, 48 (1967), 910-918.  doi: 10.2307/1934533.

[25]

S. Taheri-AraghiS. BraddeJ. T. SaulsN. S. HillP. A. LevinJ. PaulssonM. Vergassola and S. Jun, Cell-size control and homeostasis in bacteria, Current Biology, 25 (2015), 385-391. 

[26]

G. F. Webb, Dynamics of populations structured by internal variables, Math. Z., 189 (1985), 319-335.  doi: 10.1007/BF01164156.

[27]

G. F. Webb, Theory of Nonlinear Age-Dependent Population Dynamics, volume 89 of Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 1985.

[28]

G. F. Webb, An operator-theoretic formulation of asynchronous exponential growth, Trans. Amer. Math. Soc., 303 (1987), 751-763.  doi: 10.1090/S0002-9947-1987-0902796-7.

show all references

References:
[1]

G. I. Bell and E. C. Anderson, Cell growth and division: Ⅰ. a mathematical model with applications to cell volume distributions in mammalian suspension cultures, Biophysical Journal, 7 (1967), 329-351. 

[2]

E. Bernard, M. Doumic and P. Gabriel, Cyclic asymptotic behaviour of a population reproducing by fission into two equal parts, Kinetic Related Models, to appear, arXiv: 1609.03846.

[3]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext. Springer, New York, 2011.

[4]

M. J. Cáceres, J. A. Cañizo and S. Mischler, Rate of convergence to an asymptotic profile for the self-similar fragmentation and growth-fragmentation equations, J. Math. Pures Appl. (9), 96 (2011), 334–362. doi: 10.1016/j.matpur.2011.01.003.

[5]

B. de Pagter, Irreducible compact operators, Math. Z., 192 (1986), 149-153.  doi: 10.1007/BF01162028.

[6]

M. Doumic, Analysis of a population model structured by the cells molecular content, Math. Model. Nat. Phenom., 2 (2007), 121-152.  doi: 10.1051/mmnp:2007006.

[7]

M. DoumicM. HoffmannN. Krell and L. Robert, Statistical estimation of a growth-fragmentation model observed on a genealogical tree, Bernoulli, 21 (2015), 1760-1799.  doi: 10.3150/14-BEJ623.

[8]

M. Doumic Jauffret and P. Gabriel, Eigenelements of a general aggregation-fragmentation model, Math. Models Methods Appl. Sci., 20 (2010), 757-783.  doi: 10.1142/S021820251000443X.

[9]

Y. Du, Order structure and topological methods in nonlinear partial differential equations, Vol. 1. Maximum principles and applications, Series in Partial Differential Equations and Applications. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2006. Maximum principles and applications.

[10]

A. J. HallG. C. Wake and P. W. Gandar, Steady size distributions for cells in one-dimensional plant tissues, J. Math. Biol., 30 (1991), 101-123.  doi: 10.1007/BF00160330.

[11]

M. Lerch, Sur un point de la théorie des fonctions géné ratrices d'Abel, Acta Math., 27 (1903), 339-351.  doi: 10.1007/BF02421315.

[12]

J. A. J. Metz and O. Diekmann, editors, The Dynamics of Physiologically Structured Populations, volume 68 of Lecture Notes in Biomathematics, Springer-Verlag, Berlin, 1986. doi: 10.1007/978-3-662-13159-6.

[13]

P. MichelS. Mischler and B. Perthame, General entropy equations for structured population models and scattering, C. R., Math., Acad. Sci. Paris, 338 (2004), 697-702.  doi: 10.1016/j.crma.2004.03.006.

[14]

P. Michel, S. Mischler and B. Perthame, General relative entropy inequality: An illustration on growth models, J. Math. Pures Appl. (9), 84 (2005), 1235–1260. doi: 10.1016/j.matpur.2005.04.001.

[15]

S. MischlerB. Perthame and L. Ryzhik, Stability in a nonlinear population maturation model, Math. Models Methods Appl. Sci., 12 (2002), 1751-1772.  doi: 10.1142/S021820250200232X.

[16]

S. Mischler and J. Scher, Spectral analysis of semigroups and growth-fragmentation equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 33 (2016), 849-898.  doi: 10.1016/j.anihpc.2015.01.007.

[17]

A. Olivier, How does variability in cells aging and growth rates influence the malthus parameter?, Kinetic and Related Models, 10 (2017), 481-512.  doi: 10.3934/krm.2017019.

[18]

B. Perthame, Transport Equations in Biology, Frontiers in Mathematics. Birkhäuser Verlag, Basel, 2007.

[19]

B. Perthame and L. Ryzhik, Exponential decay for the fragmentation or cell-division equation, J. Differential Equations, 210 (2005), 155-177.  doi: 10.1016/j.jde.2004.10.018.

[20]

J. D. F. Richard L. Burden, Numerical Analysis, Boston, MA: PWS Publishing Company; London: ITP International Thomson Publishing, 5th ed. edition, 1993.

[21]

M. Rotenberg, Transport theory for growing cell populations, J. Theoret. Biol., 103 (1983), 181-199.  doi: 10.1016/0022-5193(83)90024-3.

[22]

J. T. SaulsD. Li and S. Jun, Adder and a coarse-grained approach to cell size homeostasis in bacteria, Current Opinion in Cell Biology, 38 (2016), 38-44.  doi: 10.1016/j.ceb.2016.02.004.

[23]

H. H. Schaefer, Banach Lattices and Positive Operators, Springer-Verlag, New York-Heidelberg, 1974.

[24]

J. W. Sinko and W. Streifer, A new model for age-size structure of a population, Ecology, 48 (1967), 910-918.  doi: 10.2307/1934533.

[25]

S. Taheri-AraghiS. BraddeJ. T. SaulsN. S. HillP. A. LevinJ. PaulssonM. Vergassola and S. Jun, Cell-size control and homeostasis in bacteria, Current Biology, 25 (2015), 385-391. 

[26]

G. F. Webb, Dynamics of populations structured by internal variables, Math. Z., 189 (1985), 319-335.  doi: 10.1007/BF01164156.

[27]

G. F. Webb, Theory of Nonlinear Age-Dependent Population Dynamics, volume 89 of Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 1985.

[28]

G. F. Webb, An operator-theoretic formulation of asynchronous exponential growth, Trans. Amer. Math. Soc., 303 (1987), 751-763.  doi: 10.1090/S0002-9947-1987-0902796-7.

Figure 1.  schematic representation of the variables on an E. coli bacterium
Figure 2.  Left: simulation of the function $ f $ by the power method with $ B(a) = \frac{2}{1+a}{1}_{\{1\leq a\}} $ and $ \mu(z) = 2\delta_{\frac{1}{2}}(z). $ Right: level set of the density $ N(a,x) $ obtained from this function $ f. $ Straight line: the set $ \{x = a+1\}. $
Figure 3.  Domain of the model, with respect to the choice of variables to describe the bacterium. Grey: domain where the bacteria densities may be positive. Arrows: transport. Left: size increment/size. Right: size increment/birth size. Dashed: location of cells of size $x_1$
[1]

Mostafa Adimy, Laurent Pujo-Menjouet. Asymptotic behavior of a singular transport equation modelling cell division. Discrete and Continuous Dynamical Systems - B, 2003, 3 (3) : 439-456. doi: 10.3934/dcdsb.2003.3.439

[2]

Jean-Paul Chehab, Pierre Garnier, Youcef Mammeri. Long-time behavior of solutions of a BBM equation with generalized damping. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 1897-1915. doi: 10.3934/dcdsb.2015.20.1897

[3]

Yihong Du, Yoshio Yamada. On the long-time limit of positive solutions to the degenerate logistic equation. Discrete and Continuous Dynamical Systems, 2009, 25 (1) : 123-132. doi: 10.3934/dcds.2009.25.123

[4]

Annalisa Iuorio, Stefano Melchionna. Long-time behavior of a nonlocal Cahn-Hilliard equation with reaction. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 3765-3788. doi: 10.3934/dcds.2018163

[5]

Pelin G. Geredeli, Azer Khanmamedov. Long-time dynamics of the parabolic $p$-Laplacian equation. Communications on Pure and Applied Analysis, 2013, 12 (2) : 735-754. doi: 10.3934/cpaa.2013.12.735

[6]

Vladimir Varlamov. Eigenfunction expansion method and the long-time asymptotics for the damped Boussinesq equation. Discrete and Continuous Dynamical Systems, 2001, 7 (4) : 675-702. doi: 10.3934/dcds.2001.7.675

[7]

Mingming Chen, Xianguo Geng, Kedong Wang. Long-time asymptotics for the modified complex short pulse equation. Discrete and Continuous Dynamical Systems, 2022  doi: 10.3934/dcds.2022060

[8]

Tomasz Komorowski. Long time asymptotics of a degenerate linear kinetic transport equation. Kinetic and Related Models, 2014, 7 (1) : 79-108. doi: 10.3934/krm.2014.7.79

[9]

Tristan Roget. On the long-time behaviour of age and trait structured population dynamics. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2551-2576. doi: 10.3934/dcdsb.2018265

[10]

Josef Diblík. Long-time behavior of positive solutions of a differential equation with state-dependent delay. Discrete and Continuous Dynamical Systems - S, 2020, 13 (1) : 31-46. doi: 10.3934/dcdss.2020002

[11]

Peter V. Gordon, Cyrill B. Muratov. Self-similarity and long-time behavior of solutions of the diffusion equation with nonlinear absorption and a boundary source. Networks and Heterogeneous Media, 2012, 7 (4) : 767-780. doi: 10.3934/nhm.2012.7.767

[12]

Andrea Giorgini. On the Swift-Hohenberg equation with slow and fast dynamics: well-posedness and long-time behavior. Communications on Pure and Applied Analysis, 2016, 15 (1) : 219-241. doi: 10.3934/cpaa.2016.15.219

[13]

Brahim Alouini. Long-time behavior of a Bose-Einstein equation in a two-dimensional thin domain. Communications on Pure and Applied Analysis, 2011, 10 (6) : 1629-1643. doi: 10.3934/cpaa.2011.10.1629

[14]

Lu Yang, Meihua Yang. Long-time behavior of stochastic reaction-diffusion equation with dynamical boundary condition. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2627-2650. doi: 10.3934/dcdsb.2017102

[15]

Jan Prüss, Vicente Vergara, Rico Zacher. Well-posedness and long-time behaviour for the non-isothermal Cahn-Hilliard equation with memory. Discrete and Continuous Dynamical Systems, 2010, 26 (2) : 625-647. doi: 10.3934/dcds.2010.26.625

[16]

Vladimir Angulo-Castillo, Lucas C. F. Ferreira, Leonardo Kosloff. Long-time solvability for the 2D dispersive SQG equation with improved regularity. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1411-1433. doi: 10.3934/dcds.2020082

[17]

Xinmin Xiang. The long-time behaviour for nonlinear Schrödinger equation and its rational pseudospectral approximation. Discrete and Continuous Dynamical Systems - B, 2005, 5 (2) : 469-488. doi: 10.3934/dcdsb.2005.5.469

[18]

Belkacem Said-Houari. Long-time behavior of solutions of the generalized Korteweg--de Vries equation. Discrete and Continuous Dynamical Systems - B, 2016, 21 (1) : 245-252. doi: 10.3934/dcdsb.2016.21.245

[19]

Xinguang Yang, Baowei Feng, Thales Maier de Souza, Taige Wang. Long-time dynamics for a non-autonomous Navier-Stokes-Voigt equation in Lipschitz domains. Discrete and Continuous Dynamical Systems - B, 2019, 24 (1) : 363-386. doi: 10.3934/dcdsb.2018084

[20]

Maurizio Grasselli, Nicolas Lecoq, Morgan Pierre. A long-time stable fully discrete approximation of the Cahn-Hilliard equation with inertial term. Conference Publications, 2011, 2011 (Special) : 543-552. doi: 10.3934/proc.2011.2011.543

2020 Impact Factor: 1.213

Metrics

  • PDF downloads (352)
  • HTML views (289)
  • Cited by (0)

Other articles
by authors

[Back to Top]