-
Previous Article
On the local and global existence of solutions to 1d transport equations with nonlocal velocity
- NHM Home
- This Issue
- Next Article
Local weak solvability of a moving boundary problem describing swelling along a halfline
1. | Nagasaki University, Department of Education, 1-14, Bunkyo-cho, Nagasaki, 852-8521, Japan |
2. | Karlstad University, Department of Mathematics and Computer Science, Universitetsgatan 2,651 88 Karlstad, Sweden |
We obtain the local well-posedness of a moving boundary problem that describes the swelling of a pocket of water within an infinitely thin elongated pore (i.e. on $ [a, +\infty), \ a>0 $). Our result involves fine a priori estimates of the moving boundary evolution, Banach fixed point arguments as well as an application of the general theory of evolution equations governed by subdifferentials.
References:
[1] |
T. Aiki, Y. Murase, N. Sato and K. Shirakawa,
A mathematical model for a hysteresis appearing in adsorption phenomena, SūrikaisekikenkyūshoKōkyūroku, 1856 (2013), 1-12.
|
[2] |
T. Aiki and Y. Murase,
On a large time behavior of a solution to a one-dimensional free boundary problem for adsorption phenomena, J. Math. Anal. Appl., 445 (2017), 837-854.
doi: 10.1016/j.jmaa.2016.06.008. |
[3] |
T. Aiki and A. Muntean,
Existence and uniqueness of solutions to a mathematical model predicting service life of concrete structures, Adv. Math. Sci. Appl., 19 (2009), 109-129.
|
[4] |
T. Aiki and A. Muntean,
Large time behavior of solutions to a moving-interface problem modeling concrete carbonation, Comm. Pure Appl. Anal., 9 (2010), 1117-1129.
doi: 10.3934/cpaa.2010.9.1117. |
[5] |
T. Aiki and A. Muntean,
A free-boundary problem for concrete carbonation: Rigorous justification of $\sqrt{t}$–law of propagation, Interface. Free Bound., 15 (2013), 167-180.
doi: 10.4171/IFB/299. |
[6] |
A. Fasano, G. Meyer and M. Primicerio,
On a problem in the polymer industry: Theoretical and numerical investigation of swelling, SIAM J. Appl. Math., 17 (1986), 945-960.
doi: 10.1137/0517067. |
[7] |
A. Fasano and A. Mikelic,
The 3D flow of a liquid through a porous medium with adsorbing and swelling granules, Interface. Free Bound., 4 (2002), 239-261.
doi: 10.4171/IFB/60. |
[8] |
T. Fatima, A. Muntean and T. Aiki,
Distributed space scales in a semilinear reaction-diffusion system including a parabolic variational inequality: A well-posedness study, Adv. Math. Sci. Appl., 22 (2012), 295-318.
|
[9] |
B. W. van de Fliert and R. van der Hout,
A generalized Stefan problem in a diffusion model with evaporation, SIAM J. Appl. Math., 60 (2000), 1128-1136.
doi: 10.1137/S0036139997327599. |
[10] |
A. Friedman and A. Tzavaras,
A quasilinear parabolic system arising in modelling of catalytic reactors, J. Differential Equations, 70 (1987), 167-196.
doi: 10.1016/0022-0396(87)90162-8. |
[11] |
N. Kenmochi,
Solvability of nonlinear evolution equations with time-dependent constraints and applications, Bull. Fac. Education, Chiba Univ., 30 (1981), 1-87.
|
[12] |
K. Kumazaki, T. Aiki, N. Sato and Y. Murase,
Multiscale model for moisture transport with adsorption phenomenon in concrete materials, Appl. Anal., 97 (2018), 41-54.
doi: 10.1080/00036811.2017.1325473. |
[13] |
K. Kumazaki and A. Muntean, Global weak solvability of a moving boundary problem describing swelling along a halfline, arXiv: 1810.08000. |
[14] |
A. Muntean and M. Böhm,
A moving boundary problem for concrete carbonation: global existence and uniqueness of solutions, J. Math. Anal. Appl., 350 (2009), 234-251.
doi: 10.1016/j.jmaa.2008.09.044. |
[15] |
A. Muntean and M. Neuss-Radu,
A multiscale Galerkin approach for a class of nonlinear coupled reaction-diffusion systems in complex media, J. Math. Anal. Appl., 37 (2010), 705-718.
doi: 10.1016/j.jmaa.2010.05.056. |
[16] |
T. L. van Noorden and I. S. Pop,
A Stefan problem modelling crystal dissolution and precipitation, IMA J. Appl. Math., 73 (2008), 393-411.
doi: 10.1093/imamat/hxm060. |
[17] |
T. L. van Noorden, I. S. Pop, A. Ebigbo and R. Helmig,
An upscaled model for biofilm growth in a thin strip, Water Resour. Res., 46 (2010), 1-14.
doi: 10.1029/2009WR008217. |
[18] |
N. Sato, T. Aiki, Y. Murase and K. Shirakawa,
A one dimensional free boundary problem for adsorption phenomena, Netw. Heterog. Media, 9 (2014), 655-668.
doi: 10.3934/nhm.2014.9.655. |
[19] |
M. J. Setzer,
Micro-ice-lens formation in porous solid, J. Colloid Interface Sci., 243 (2001), 193-201.
doi: 10.1006/jcis.2001.7828. |
[20] |
X. Weiqing,
The Stefan problem with a kinetic condition at the free boundary, SIAM J. Math. Anal., 21 (1990), 362-373.
doi: 10.1137/0521020. |
[21] |
M. Zaal,
Cell swelling by osmosis: A variational approach, Interface. Free Bound., 14 (2012), 487-520.
doi: 10.4171/IFB/289. |
show all references
References:
[1] |
T. Aiki, Y. Murase, N. Sato and K. Shirakawa,
A mathematical model for a hysteresis appearing in adsorption phenomena, SūrikaisekikenkyūshoKōkyūroku, 1856 (2013), 1-12.
|
[2] |
T. Aiki and Y. Murase,
On a large time behavior of a solution to a one-dimensional free boundary problem for adsorption phenomena, J. Math. Anal. Appl., 445 (2017), 837-854.
doi: 10.1016/j.jmaa.2016.06.008. |
[3] |
T. Aiki and A. Muntean,
Existence and uniqueness of solutions to a mathematical model predicting service life of concrete structures, Adv. Math. Sci. Appl., 19 (2009), 109-129.
|
[4] |
T. Aiki and A. Muntean,
Large time behavior of solutions to a moving-interface problem modeling concrete carbonation, Comm. Pure Appl. Anal., 9 (2010), 1117-1129.
doi: 10.3934/cpaa.2010.9.1117. |
[5] |
T. Aiki and A. Muntean,
A free-boundary problem for concrete carbonation: Rigorous justification of $\sqrt{t}$–law of propagation, Interface. Free Bound., 15 (2013), 167-180.
doi: 10.4171/IFB/299. |
[6] |
A. Fasano, G. Meyer and M. Primicerio,
On a problem in the polymer industry: Theoretical and numerical investigation of swelling, SIAM J. Appl. Math., 17 (1986), 945-960.
doi: 10.1137/0517067. |
[7] |
A. Fasano and A. Mikelic,
The 3D flow of a liquid through a porous medium with adsorbing and swelling granules, Interface. Free Bound., 4 (2002), 239-261.
doi: 10.4171/IFB/60. |
[8] |
T. Fatima, A. Muntean and T. Aiki,
Distributed space scales in a semilinear reaction-diffusion system including a parabolic variational inequality: A well-posedness study, Adv. Math. Sci. Appl., 22 (2012), 295-318.
|
[9] |
B. W. van de Fliert and R. van der Hout,
A generalized Stefan problem in a diffusion model with evaporation, SIAM J. Appl. Math., 60 (2000), 1128-1136.
doi: 10.1137/S0036139997327599. |
[10] |
A. Friedman and A. Tzavaras,
A quasilinear parabolic system arising in modelling of catalytic reactors, J. Differential Equations, 70 (1987), 167-196.
doi: 10.1016/0022-0396(87)90162-8. |
[11] |
N. Kenmochi,
Solvability of nonlinear evolution equations with time-dependent constraints and applications, Bull. Fac. Education, Chiba Univ., 30 (1981), 1-87.
|
[12] |
K. Kumazaki, T. Aiki, N. Sato and Y. Murase,
Multiscale model for moisture transport with adsorption phenomenon in concrete materials, Appl. Anal., 97 (2018), 41-54.
doi: 10.1080/00036811.2017.1325473. |
[13] |
K. Kumazaki and A. Muntean, Global weak solvability of a moving boundary problem describing swelling along a halfline, arXiv: 1810.08000. |
[14] |
A. Muntean and M. Böhm,
A moving boundary problem for concrete carbonation: global existence and uniqueness of solutions, J. Math. Anal. Appl., 350 (2009), 234-251.
doi: 10.1016/j.jmaa.2008.09.044. |
[15] |
A. Muntean and M. Neuss-Radu,
A multiscale Galerkin approach for a class of nonlinear coupled reaction-diffusion systems in complex media, J. Math. Anal. Appl., 37 (2010), 705-718.
doi: 10.1016/j.jmaa.2010.05.056. |
[16] |
T. L. van Noorden and I. S. Pop,
A Stefan problem modelling crystal dissolution and precipitation, IMA J. Appl. Math., 73 (2008), 393-411.
doi: 10.1093/imamat/hxm060. |
[17] |
T. L. van Noorden, I. S. Pop, A. Ebigbo and R. Helmig,
An upscaled model for biofilm growth in a thin strip, Water Resour. Res., 46 (2010), 1-14.
doi: 10.1029/2009WR008217. |
[18] |
N. Sato, T. Aiki, Y. Murase and K. Shirakawa,
A one dimensional free boundary problem for adsorption phenomena, Netw. Heterog. Media, 9 (2014), 655-668.
doi: 10.3934/nhm.2014.9.655. |
[19] |
M. J. Setzer,
Micro-ice-lens formation in porous solid, J. Colloid Interface Sci., 243 (2001), 193-201.
doi: 10.1006/jcis.2001.7828. |
[20] |
X. Weiqing,
The Stefan problem with a kinetic condition at the free boundary, SIAM J. Math. Anal., 21 (1990), 362-373.
doi: 10.1137/0521020. |
[21] |
M. Zaal,
Cell swelling by osmosis: A variational approach, Interface. Free Bound., 14 (2012), 487-520.
doi: 10.4171/IFB/289. |
[1] |
Runzhang Xu, Mingyou Zhang, Shaohua Chen, Yanbing Yang, Jihong Shen. The initial-boundary value problems for a class of sixth order nonlinear wave equation. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5631-5649. doi: 10.3934/dcds.2017244 |
[2] |
Boling Guo, Jun Wu. Well-posedness of the initial-boundary value problem for the fourth-order nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3749-3778. doi: 10.3934/dcdsb.2021205 |
[3] |
Linglong Du, Caixuan Ren. Pointwise wave behavior of the initial-boundary value problem for the nonlinear damped wave equation in $\mathbb{R}_{+}^{n} $. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3265-3280. doi: 10.3934/dcdsb.2018319 |
[4] |
Alexandre Nolasco de Carvalho, Marcos Roberto Teixeira Primo. Spatial homogeneity in parabolic problems with nonlinear boundary conditions. Communications on Pure and Applied Analysis, 2004, 3 (4) : 637-651. doi: 10.3934/cpaa.2004.3.637 |
[5] |
Gilles Carbou, Bernard Hanouzet. Relaxation approximation of the Kerr model for the impedance initial-boundary value problem. Conference Publications, 2007, 2007 (Special) : 212-220. doi: 10.3934/proc.2007.2007.212 |
[6] |
Xianpeng Hu, Dehua Wang. The initial-boundary value problem for the compressible viscoelastic flows. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 917-934. doi: 10.3934/dcds.2015.35.917 |
[7] |
Michal Beneš. Mixed initial-boundary value problem for the three-dimensional Navier-Stokes equations in polyhedral domains. Conference Publications, 2011, 2011 (Special) : 135-144. doi: 10.3934/proc.2011.2011.135 |
[8] |
Chunlai Mu, Zhaoyin Xiang. Blowup behaviors for degenerate parabolic equations coupled via nonlinear boundary flux. Communications on Pure and Applied Analysis, 2007, 6 (2) : 487-503. doi: 10.3934/cpaa.2007.6.487 |
[9] |
Théophile Chaumont-Frelet, Serge Nicaise, Jérôme Tomezyk. Uniform a priori estimates for elliptic problems with impedance boundary conditions. Communications on Pure and Applied Analysis, 2020, 19 (5) : 2445-2471. doi: 10.3934/cpaa.2020107 |
[10] |
Mark I. Vishik, Sergey Zelik. Attractors for the nonlinear elliptic boundary value problems and their parabolic singular limit. Communications on Pure and Applied Analysis, 2014, 13 (5) : 2059-2093. doi: 10.3934/cpaa.2014.13.2059 |
[11] |
Zhiyuan Li, Xinchi Huang, Masahiro Yamamoto. Initial-boundary value problems for multi-term time-fractional diffusion equations with $ x $-dependent coefficients. Evolution Equations and Control Theory, 2020, 9 (1) : 153-179. doi: 10.3934/eect.2020001 |
[12] |
V. A. Dougalis, D. E. Mitsotakis, J.-C. Saut. On initial-boundary value problems for a Boussinesq system of BBM-BBM type in a plane domain. Discrete and Continuous Dynamical Systems, 2009, 23 (4) : 1191-1204. doi: 10.3934/dcds.2009.23.1191 |
[13] |
Shou-Fu Tian. Initial-boundary value problems for the coupled modified Korteweg-de Vries equation on the interval. Communications on Pure and Applied Analysis, 2018, 17 (3) : 923-957. doi: 10.3934/cpaa.2018046 |
[14] |
Rusuo Ye, Yi Zhang. Initial-boundary value problems for the two-component complex modified Korteweg-de Vries equation on the interval. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022111 |
[15] |
Mahamadi Warma. Semi linear parabolic equations with nonlinear general Wentzell boundary conditions. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5493-5506. doi: 10.3934/dcds.2013.33.5493 |
[16] |
Xiaoyun Cai, Liangwen Liao, Yongzhong Sun. Global strong solution to the initial-boundary value problem of a 2-D Kazhikhov-Smagulov type model. Discrete and Continuous Dynamical Systems - S, 2014, 7 (5) : 917-923. doi: 10.3934/dcdss.2014.7.917 |
[17] |
Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381 |
[18] |
Martn P. Árciga Alejandre, Elena I. Kaikina. Mixed initial-boundary value problem for Ott-Sudan-Ostrovskiy equation. Discrete and Continuous Dynamical Systems, 2012, 32 (2) : 381-409. doi: 10.3934/dcds.2012.32.381 |
[19] |
Türker Özsarı, Nermin Yolcu. The initial-boundary value problem for the biharmonic Schrödinger equation on the half-line. Communications on Pure and Applied Analysis, 2019, 18 (6) : 3285-3316. doi: 10.3934/cpaa.2019148 |
[20] |
Peng Jiang. Unique global solution of an initial-boundary value problem to a diffusion approximation model in radiation hydrodynamics. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 3015-3037. doi: 10.3934/dcds.2015.35.3015 |
2020 Impact Factor: 1.213
Tools
Metrics
Other articles
by authors
[Back to Top]