• Previous Article
    Saddle solutions for a class of systems of periodic and reversible semilinear elliptic equations
  • NHM Home
  • This Issue
  • Next Article
    Compressible and viscous two-phase flow in porous media based on mixture theory formulation
September  2019, 14(3): 537-566. doi: 10.3934/nhm.2019021

A class of infinite horizon mean field games on networks

1. 

Univ. Paris Diderot, Sorbonne Paris Cité, Laboratoire Jacques-Louis Lions, UMR 7598, UPMC, CNRS, F-75205 Paris, France

2. 

Univ Rennes, CNRS, IRMAR - UMR 6625, F-35000 Rennes, France

3. 

Univ Rennes, INSA Rennes, CNRS, IRMAR - UMR 6625, F-35000 Rennes, France

* Corresponding author: Yves Achdou

Received  July 2018 Revised  January 2019 Published  May 2019

Fund Project: The authors were partially supported by ANR project ANR-16-CE40-0015-01. The work of O. Ley and N. Tchou was partially supported by the Centre Henri Lebesgue ANR-11-LABX-0020-01.

We consider stochastic mean field games for which the state space is a network. In the ergodic case, they are described by a system coupling a Hamilton-Jacobi-Bellman equation and a Fokker-Planck equation, whose unknowns are the invariant measure $ m $, a value function $ u $, and the ergodic constant $ \rho $. The function $ u $ is continuous and satisfies general Kirchhoff conditions at the vertices. The invariant measure $ m $ satisfies dual transmission conditions: in particular, $ m $ is discontinuous across the vertices in general, and the values of $ m $ on each side of the vertices satisfy special compatibility conditions. Existence and uniqueness are proven under suitable assumptions.

Citation: Yves Achdou, Manh-Khang Dao, Olivier Ley, Nicoletta Tchou. A class of infinite horizon mean field games on networks. Networks & Heterogeneous Media, 2019, 14 (3) : 537-566. doi: 10.3934/nhm.2019021
References:
[1]

Y. Achdou, Finite difference methods for mean field games, in Hamilton-Jacobi Equations: Approximations, Numerical Analysis And Applications, Lecture Notes in Mathematics, 2074, Springer, Heidelberg, 2013, 1–47. doi: 10.1007/978-3-642-36433-4_1.  Google Scholar

[2]

Y. AchdouF. CamilliA. Cutrì and N. Tchou, Hamilton–Jacobi equations constrained on networks, NoDEA Nonlinear Differential Equations Appl., 20 (2013), 413-445.  doi: 10.1007/s00030-012-0158-1.  Google Scholar

[3]

Y. Achdou and I. Capuzzo-Dolcetta, Mean field games: numerical methods, SIAM J. Numer. Anal., 48 (2010), 1136-1162.  doi: 10.1137/090758477.  Google Scholar

[4]

Y. AchdouS. Oudet and N. Tchou, Hamilton-Jacobi equations for optimal control on junctions and networks, ESAIM Control Optim. Calc. Var., 21 (2015), 876-899.  doi: 10.1051/cocv/2014054.  Google Scholar

[5]

Y. Achdou and A. Porretta, Convergence of a finite difference scheme to weak solutions of the system of partial differential equation arising in mean field games, SIAM J. Numer. Anal., 54 (2016), 161-186.  doi: 10.1137/15M1015455.  Google Scholar

[6]

L. Boccardo, F. Murat and J.-P. Puel, Existence de solutions faibles pour des équations elliptiques quasi-linéaires à croissance quadratique, in Nonlinear Partial Differential Equations and Their Applications, Res. Notes in Math, 84, Pitman, Boston, Mass.-London, 1983, 19–73.  Google Scholar

[7]

F. Camilli and C. Marchi, Stationary mean field games systems defined on networks, SIAM J. Control Optim., 54 (2016), 1085-1103.  doi: 10.1137/15M1022082.  Google Scholar

[8]

F. CamilliC. Marchi and D. Schieborn, The vanishing viscosity limit for Hamilton-Jacobi equations on networks, J. Differential Equations, 254 (2013), 4122-4143.  doi: 10.1016/j.jde.2013.02.013.  Google Scholar

[9]

P. Cardaliaguet, Notes on mean field games, Preprint, 2011. Google Scholar

[10]

R. Carmona and F. Delarue, Probabilistic Theory of Mean Field Games with Applications. I-II, Springer, 2017.  Google Scholar

[11]

M.-K. Dao, Ph.D. thesis, 2018. Google Scholar

[12]

K.-J. EngelM. Kramar FijavžR. Nagel and E. Sikolya, Vertex control of flows in networks, Netw. Heterog. Media, 3 (2008), 709-722.  doi: 10.3934/nhm.2008.3.709.  Google Scholar

[13]

A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements, Applied Mathematical Sciences, 159, Springer-Verlag, New York, 2004. doi: 10.1007/978-1-4757-4355-5.  Google Scholar

[14]

N. ForcadelW. Salazar and M. Zaydan, Homogenization of second order discrete model with local perturbation and application to traffic flow, Discrete Contin. Dyn. Syst., 37 (2017), 1437-1487.  doi: 10.3934/dcds.2017060.  Google Scholar

[15]

M. I. Freidlin and S.-J. Sheu, Diffusion processes on graphs: Stochastic differential equations, large deviation principle, Probab. Theory Related Fields, 116 (2000), 181-220.  doi: 10.1007/PL00008726.  Google Scholar

[16]

M. I. Freidlin and A. D. Wentzell, Diffusion processes on graphs and the averaging principle, Ann. Probab., 21 (1993), 2215-2245.  doi: 10.1214/aop/1176989018.  Google Scholar

[17]

M. Garavello and B. Piccoli, Traffic Flow on Networks, AIMS Series on Applied Mathematics, 1, American Institute of Mathematical Sciences, Springfield, MO, 2006.  Google Scholar

[18]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Reprint of the 1998 edition, Classics in Mathematics, Springer-Verlag, Berlin, 2001.  Google Scholar

[19]

D. A. GomesS. Patrizi and V. Voskanyan, On the existence of classical solutions for stationary extended mean field games, Nonlinear Anal., 99 (2014), 49-79.  doi: 10.1016/j.na.2013.12.016.  Google Scholar

[20]

D. A. Gomes and E. Pimentel, Local regularity for mean-field games in the whole space, Minimax Theory Appl., 1 (2016), 65-82.   Google Scholar

[21]

D. A. GomesE. A. Pimentel and H. Sánchez-Morgado, Time-dependent mean-field games in the subquadratic case, Comm. Partial Differential Equations, 40 (2015), 40-76.  doi: 10.1080/03605302.2014.903574.  Google Scholar

[22]

O. Guéant, J.-M. Lasry and P.-L. Lions, Mean field games and applications, in Paris-Princeton Lectures on Mathematical Finance 2010, Lecture Notes in Mathematics, 2003, Springer, Berlin, 2011,205–266. doi: 10.1007/978-3-642-14660-2_3.  Google Scholar

[23]

M. HuangP. E. Caines and R. P. Malhamé, An invariance principle in large population stochastic dynamic games, J. Syst. Sci. Complex., 20 (2007), 162-172.  doi: 10.1007/s11424-007-9015-4.  Google Scholar

[24]

M. HuangP. E. Caines and R. P. Malhamé, Large-population cost-coupled LQG problems with nonuniform agents: Individual-mass behavior and decentralized ϵ-Nash equilibria, IEEE Trans. Automat. Control, 52 (2007), 1560-1571.  doi: 10.1109/TAC.2007.904450.  Google Scholar

[25]

M. HuangR. P. Malhamé and P. E. Caines, Large population stochastic dynamic games: Closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle, Commun. Inf. Syst., 6 (2006), 221-251.  doi: 10.4310/CIS.2006.v6.n3.a5.  Google Scholar

[26]

C. ImbertR. Monneau and H. Zidani, A Hamilton-Jacobi approach to junction problems and application to traffic flows, ESAIM Control Optim. Calc. Var., 19 (2013), 129-166.  doi: 10.1051/cocv/2012002.  Google Scholar

[27]

C. Imbert and R. Monneau, Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks, Ann. Sci. Éc. Norm. Supér., 50 (2017), 357–448. doi: 10.24033/asens.2323.  Google Scholar

[28]

J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. Ⅰ. Le cas stationnaire, C. R. Math. Acad. Sci. Paris, 343 (2006), 619-625.  doi: 10.1016/j.crma.2006.09.019.  Google Scholar

[29]

J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. Ⅱ. Horizon fini et contrôle optimal, C. R. Math. Acad. Sci. Paris, 343 (2006), 679-684.  doi: 10.1016/j.crma.2006.09.018.  Google Scholar

[30]

J.-M. Lasry and P.-L. Lions, Mean field games, Jpn. J. Math., 2 (2007), 229-260.  doi: 10.1007/s11537-007-0657-8.  Google Scholar

[31]

P.-L. Lions and P. Souganidis, Viscosity solutions for junctions: Well posedness and stability, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 27 (2016), 535-545.  doi: 10.4171/RLM/747.  Google Scholar

[32]

P.-L. Lions and P. Souganidis, Well-posedness for multi-dimensional junction problems with Kirchoff-type conditions, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 28 (2017), 807-816.  doi: 10.4171/RLM/786.  Google Scholar

[33]

A. Porretta, Weak solutions to Fokker-Planck equations and mean field games, Arch. Rational Mech. Anal., 216 (2015), 1-62.  doi: 10.1007/s00205-014-0799-9.  Google Scholar

[34]

A. Porretta, On the weak theory for mean field games systems, Boll. U.M.I., 10 (2017), 411-439.  doi: 10.1007/s40574-016-0105-x.  Google Scholar

[35]

J. von Below, Classical solvability of linear parabolic equations on networks, J. Differential Equations, 72 (1988), 316-337.  doi: 10.1016/0022-0396(88)90158-1.  Google Scholar

show all references

References:
[1]

Y. Achdou, Finite difference methods for mean field games, in Hamilton-Jacobi Equations: Approximations, Numerical Analysis And Applications, Lecture Notes in Mathematics, 2074, Springer, Heidelberg, 2013, 1–47. doi: 10.1007/978-3-642-36433-4_1.  Google Scholar

[2]

Y. AchdouF. CamilliA. Cutrì and N. Tchou, Hamilton–Jacobi equations constrained on networks, NoDEA Nonlinear Differential Equations Appl., 20 (2013), 413-445.  doi: 10.1007/s00030-012-0158-1.  Google Scholar

[3]

Y. Achdou and I. Capuzzo-Dolcetta, Mean field games: numerical methods, SIAM J. Numer. Anal., 48 (2010), 1136-1162.  doi: 10.1137/090758477.  Google Scholar

[4]

Y. AchdouS. Oudet and N. Tchou, Hamilton-Jacobi equations for optimal control on junctions and networks, ESAIM Control Optim. Calc. Var., 21 (2015), 876-899.  doi: 10.1051/cocv/2014054.  Google Scholar

[5]

Y. Achdou and A. Porretta, Convergence of a finite difference scheme to weak solutions of the system of partial differential equation arising in mean field games, SIAM J. Numer. Anal., 54 (2016), 161-186.  doi: 10.1137/15M1015455.  Google Scholar

[6]

L. Boccardo, F. Murat and J.-P. Puel, Existence de solutions faibles pour des équations elliptiques quasi-linéaires à croissance quadratique, in Nonlinear Partial Differential Equations and Their Applications, Res. Notes in Math, 84, Pitman, Boston, Mass.-London, 1983, 19–73.  Google Scholar

[7]

F. Camilli and C. Marchi, Stationary mean field games systems defined on networks, SIAM J. Control Optim., 54 (2016), 1085-1103.  doi: 10.1137/15M1022082.  Google Scholar

[8]

F. CamilliC. Marchi and D. Schieborn, The vanishing viscosity limit for Hamilton-Jacobi equations on networks, J. Differential Equations, 254 (2013), 4122-4143.  doi: 10.1016/j.jde.2013.02.013.  Google Scholar

[9]

P. Cardaliaguet, Notes on mean field games, Preprint, 2011. Google Scholar

[10]

R. Carmona and F. Delarue, Probabilistic Theory of Mean Field Games with Applications. I-II, Springer, 2017.  Google Scholar

[11]

M.-K. Dao, Ph.D. thesis, 2018. Google Scholar

[12]

K.-J. EngelM. Kramar FijavžR. Nagel and E. Sikolya, Vertex control of flows in networks, Netw. Heterog. Media, 3 (2008), 709-722.  doi: 10.3934/nhm.2008.3.709.  Google Scholar

[13]

A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements, Applied Mathematical Sciences, 159, Springer-Verlag, New York, 2004. doi: 10.1007/978-1-4757-4355-5.  Google Scholar

[14]

N. ForcadelW. Salazar and M. Zaydan, Homogenization of second order discrete model with local perturbation and application to traffic flow, Discrete Contin. Dyn. Syst., 37 (2017), 1437-1487.  doi: 10.3934/dcds.2017060.  Google Scholar

[15]

M. I. Freidlin and S.-J. Sheu, Diffusion processes on graphs: Stochastic differential equations, large deviation principle, Probab. Theory Related Fields, 116 (2000), 181-220.  doi: 10.1007/PL00008726.  Google Scholar

[16]

M. I. Freidlin and A. D. Wentzell, Diffusion processes on graphs and the averaging principle, Ann. Probab., 21 (1993), 2215-2245.  doi: 10.1214/aop/1176989018.  Google Scholar

[17]

M. Garavello and B. Piccoli, Traffic Flow on Networks, AIMS Series on Applied Mathematics, 1, American Institute of Mathematical Sciences, Springfield, MO, 2006.  Google Scholar

[18]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Reprint of the 1998 edition, Classics in Mathematics, Springer-Verlag, Berlin, 2001.  Google Scholar

[19]

D. A. GomesS. Patrizi and V. Voskanyan, On the existence of classical solutions for stationary extended mean field games, Nonlinear Anal., 99 (2014), 49-79.  doi: 10.1016/j.na.2013.12.016.  Google Scholar

[20]

D. A. Gomes and E. Pimentel, Local regularity for mean-field games in the whole space, Minimax Theory Appl., 1 (2016), 65-82.   Google Scholar

[21]

D. A. GomesE. A. Pimentel and H. Sánchez-Morgado, Time-dependent mean-field games in the subquadratic case, Comm. Partial Differential Equations, 40 (2015), 40-76.  doi: 10.1080/03605302.2014.903574.  Google Scholar

[22]

O. Guéant, J.-M. Lasry and P.-L. Lions, Mean field games and applications, in Paris-Princeton Lectures on Mathematical Finance 2010, Lecture Notes in Mathematics, 2003, Springer, Berlin, 2011,205–266. doi: 10.1007/978-3-642-14660-2_3.  Google Scholar

[23]

M. HuangP. E. Caines and R. P. Malhamé, An invariance principle in large population stochastic dynamic games, J. Syst. Sci. Complex., 20 (2007), 162-172.  doi: 10.1007/s11424-007-9015-4.  Google Scholar

[24]

M. HuangP. E. Caines and R. P. Malhamé, Large-population cost-coupled LQG problems with nonuniform agents: Individual-mass behavior and decentralized ϵ-Nash equilibria, IEEE Trans. Automat. Control, 52 (2007), 1560-1571.  doi: 10.1109/TAC.2007.904450.  Google Scholar

[25]

M. HuangR. P. Malhamé and P. E. Caines, Large population stochastic dynamic games: Closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle, Commun. Inf. Syst., 6 (2006), 221-251.  doi: 10.4310/CIS.2006.v6.n3.a5.  Google Scholar

[26]

C. ImbertR. Monneau and H. Zidani, A Hamilton-Jacobi approach to junction problems and application to traffic flows, ESAIM Control Optim. Calc. Var., 19 (2013), 129-166.  doi: 10.1051/cocv/2012002.  Google Scholar

[27]

C. Imbert and R. Monneau, Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks, Ann. Sci. Éc. Norm. Supér., 50 (2017), 357–448. doi: 10.24033/asens.2323.  Google Scholar

[28]

J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. Ⅰ. Le cas stationnaire, C. R. Math. Acad. Sci. Paris, 343 (2006), 619-625.  doi: 10.1016/j.crma.2006.09.019.  Google Scholar

[29]

J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. Ⅱ. Horizon fini et contrôle optimal, C. R. Math. Acad. Sci. Paris, 343 (2006), 679-684.  doi: 10.1016/j.crma.2006.09.018.  Google Scholar

[30]

J.-M. Lasry and P.-L. Lions, Mean field games, Jpn. J. Math., 2 (2007), 229-260.  doi: 10.1007/s11537-007-0657-8.  Google Scholar

[31]

P.-L. Lions and P. Souganidis, Viscosity solutions for junctions: Well posedness and stability, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 27 (2016), 535-545.  doi: 10.4171/RLM/747.  Google Scholar

[32]

P.-L. Lions and P. Souganidis, Well-posedness for multi-dimensional junction problems with Kirchoff-type conditions, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 28 (2017), 807-816.  doi: 10.4171/RLM/786.  Google Scholar

[33]

A. Porretta, Weak solutions to Fokker-Planck equations and mean field games, Arch. Rational Mech. Anal., 216 (2015), 1-62.  doi: 10.1007/s00205-014-0799-9.  Google Scholar

[34]

A. Porretta, On the weak theory for mean field games systems, Boll. U.M.I., 10 (2017), 411-439.  doi: 10.1007/s40574-016-0105-x.  Google Scholar

[35]

J. von Below, Classical solvability of linear parabolic equations on networks, J. Differential Equations, 72 (1988), 316-337.  doi: 10.1016/0022-0396(88)90158-1.  Google Scholar

Figure 1.  Left: the network $ \Gamma $ in which the edges are oriented toward the vertex with larger index ($ 4 $ vertices and $ 4 $ edges). Right: a new network $ \tilde \Gamma $ obtained by adding an artificial vertex ($ 5 $ vertices and $ 5 $ edges): the oriented edges sharing a given vertex $ \nu $ either have all their starting point equal $ \nu $, or have all their terminal point equal $ \nu $
[1]

Laura Aquilanti, Simone Cacace, Fabio Camilli, Raul De Maio. A Mean Field Games model for finite mixtures of Bernoulli and categorical distributions. Journal of Dynamics & Games, 2020  doi: 10.3934/jdg.2020033

[2]

Jingrui Sun, Hanxiao Wang. Mean-field stochastic linear-quadratic optimal control problems: Weak closed-loop solvability. Mathematical Control & Related Fields, 2021, 11 (1) : 47-71. doi: 10.3934/mcrf.2020026

[3]

Illés Horváth, Kristóf Attila Horváth, Péter Kovács, Miklós Telek. Mean-field analysis of a scaling MAC radio protocol. Journal of Industrial & Management Optimization, 2021, 17 (1) : 279-297. doi: 10.3934/jimo.2019111

[4]

Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039

[5]

Alain Bensoussan, Xinwei Feng, Jianhui Huang. Linear-quadratic-Gaussian mean-field-game with partial observation and common noise. Mathematical Control & Related Fields, 2021, 11 (1) : 23-46. doi: 10.3934/mcrf.2020025

[6]

Wenya Qi, Padmanabhan Seshaiyer, Junping Wang. A four-field mixed finite element method for Biot's consolidation problems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020127

[7]

Andreas Koutsogiannis. Multiple ergodic averages for tempered functions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1177-1205. doi: 10.3934/dcds.2020314

[8]

Xiaoxian Tang, Jie Wang. Bistability of sequestration networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1337-1357. doi: 10.3934/dcdsb.2020165

[9]

Jie Li, Xiangdong Ye, Tao Yu. Mean equicontinuity, complexity and applications. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 359-393. doi: 10.3934/dcds.2020167

[10]

D. R. Michiel Renger, Johannes Zimmer. Orthogonality of fluxes in general nonlinear reaction networks. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 205-217. doi: 10.3934/dcdss.2020346

[11]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[12]

Lars Grüne. Computing Lyapunov functions using deep neural networks. Journal of Computational Dynamics, 2020  doi: 10.3934/jcd.2021006

[13]

Pedro Aceves-Sanchez, Benjamin Aymard, Diane Peurichard, Pol Kennel, Anne Lorsignol, Franck Plouraboué, Louis Casteilla, Pierre Degond. A new model for the emergence of blood capillary networks. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2021001

[14]

Leslaw Skrzypek, Yuncheng You. Feedback synchronization of FHN cellular neural networks. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021001

[15]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[16]

Helin Guo, Huan-Song Zhou. Properties of the minimizers for a constrained minimization problem arising in Kirchhoff equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1023-1050. doi: 10.3934/dcds.2020308

[17]

Yanan Li, Zhijian Yang, Na Feng. Uniform attractors and their continuity for the non-autonomous Kirchhoff wave models. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021018

[18]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[19]

Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020395

[20]

Hongfei Yang, Xiaofeng Ding, Raymond Chan, Hui Hu, Yaxin Peng, Tieyong Zeng. A new initialization method based on normed statistical spaces in deep networks. Inverse Problems & Imaging, 2021, 15 (1) : 147-158. doi: 10.3934/ipi.2020045

2019 Impact Factor: 1.053

Metrics

  • PDF downloads (114)
  • HTML views (272)
  • Cited by (1)

[Back to Top]