We study systems of elliptic equations $ -\Delta u(x)+F_{u}(x, u) = 0 $ with potentials $ F\in C^{2}({\mathbb{R}}^{n}, {\mathbb{R}}^{m}) $ which are periodic and even in all their variables. We show that if $ F(x, u) $ has flip symmetry with respect to two of the components of $ x $ and if the minimal periodic solutions are not degenerate then the system has saddle type solutions on $ {\mathbb{R}}^{n} $.
Citation: |
[1] |
S. Alama, L. Bronsard and C. Gui, Stationary layered solutions in ${\mathbb{R}}^{2}$ for an Allen-Cahn system with multiple well potential, Calc. Var. Partial Differential Equations, 5 (1997), 359–390.
doi: 10.1007/s005260050071.![]() ![]() ![]() |
[2] |
F. Alessio, G. Autuori and P. Montecchiari, Saddle type solutions for a class of reversible elliptic equations, Adv. Differential Equations, 21 (2016), 1-30.
![]() ![]() |
[3] |
F. Alessio, M. L. Bertotti and P. Montecchiari, Multibump solutions to possibly degenerate equilibria for almost periodic Lagrangian systems, Z. Angew. Math. Phys., 50 (1999), 860-891.
doi: 10.1007/s000330050184.![]() ![]() ![]() |
[4] |
F. Alessio, A. Calamai and P. Montecchiari, Saddle type solutions to a class of semilinear elliptic equations, Adv. Differential Equations, 12 (2007), 361-380.
![]() ![]() |
[5] |
F. Alessio, C. Gui and P. Montecchiari, Saddle solutions to Allen-Cahn equations in doubly periodic media, Indiana Univ. Math. J., 65 (2016), 199-221.
doi: 10.1512/iumj.2016.65.5772.![]() ![]() ![]() |
[6] |
F. Alessio and P. Montecchiari, Layered solutions with multiple asymptotes for non autonomous Allen-Cahn equations in ${\mathbb{R}}^3$, Calc. Var. Partial Differential Equations, 46 (2013), 591-622.
doi: 10.1007/s00526-012-0495-2.![]() ![]() ![]() |
[7] |
F. Alessio and P. Montecchiari, Saddle solutions for bistable symmetric semilinear elliptic equations, NoDEA Nonlinear Differential Equation Appl., 20 (2013), 1317-1346.
doi: 10.1007/s00030-012-0210-1.![]() ![]() ![]() |
[8] |
F. Alessio and P. Montecchiari, Multiplicity of layered solutions for Allen-Cahn systems with symmetric double well potential, J. Differential Equations, 257 (2014), 4572-4599.
doi: 10.1016/j.jde.2014.09.001.![]() ![]() ![]() |
[9] |
S. Aubry and P. Y. LeDaeron, The discrete Frenkel–Kantorova model and its extensions I–Exact results for the ground states, Physica, 8D (1983), 381-422.
doi: 10.1016/0167-2789(83)90233-6.![]() ![]() ![]() |
[10] |
U. Bessi, Many solutions of elliptic problems on ${\mathbb{R}}^{n}$ of irrational slope, Comm. Partial Differential Equations, 30 (2005), 1773-1804.
doi: 10.1080/03605300500299992.![]() ![]() ![]() |
[11] |
U. Bessi, Slope-changing solutions of elliptic problems on ${\mathbb{R}}^n$, Nonlinear Anal., 68 (2008), 3923-3947.
doi: 10.1016/j.na.2007.04.031.![]() ![]() ![]() |
[12] |
S. Bolotin and P. H. Rabinowitz, Hybrid mountain pass homoclinic solutions of a class of semilinear elliptic PDEs, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 103-128.
doi: 10.1016/j.anihpc.2013.02.003.![]() ![]() ![]() |
[13] |
V. Bangert, On minimal laminations of the torus, Ann. Inst. H. Poincaré Anal. Non Linéaire, 6 (1989), 95-138.
doi: 10.1016/S0294-1449(16)30328-6.![]() ![]() ![]() |
[14] |
X. Cabré and J. Terra, Saddle-shaped solutions of bistable diffusion equations in all of ${\mathbb{R}}^{2m}$, J. Eur. Math. Soc. (JEMS), 11 (2009), 819-943.
doi: 10.4171/JEMS/168.![]() ![]() ![]() |
[15] |
X. Cabré and J. Terra, Qualitative properties of saddle-shaped solutions to bistable diffusion equations, Comm. Partial Differential Equations, 35 (2010), 1923-1957.
doi: 10.1080/03605302.2010.484039.![]() ![]() ![]() |
[16] |
H. Dang, P. C. Fife and L. A. Peletier, Saddle solutions of the bistable diffusion equation, Z. Angew. Math. Phys, 43 (1992), 984-998.
doi: 10.1007/BF00916424.![]() ![]() ![]() |
[17] |
R. de la Llave and E. Valdinoci, A generalization of Aubry-Mather theory to partial differential equations and pseudo-differential equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1309-1344.
doi: 10.1016/j.anihpc.2008.11.002.![]() ![]() ![]() |
[18] |
M. del Pino, M. Kowalczyk, F. Pacard and J. Wei, Multiple-end solutions to the Allen-Cahn equation in R2, J. Funct. Anal., 258 (2010), 458-503.
doi: 10.1016/j.jfa.2009.04.020.![]() ![]() ![]() |
[19] |
C. Gui, Symmetry of some entire solutions to the Allen-Cahn equation in two dimensions, J. Differential Equations, 252 (2012), 5853-5874.
doi: 10.1016/j.jde.2012.03.004.![]() ![]() ![]() |
[20] |
C. Gui and M. Schatzman, Symmetric quadruple phase transitions, Indiana Univ. Math. J., 57 (2008), 781-836.
doi: 10.1512/iumj.2008.57.3089.![]() ![]() ![]() |
[21] |
M. Kowalczyk and Y. Liu, Nondegeneracy of the saddle solution of the Allen-Cahn equation, Proc. Amer. Math. Soc., 139 (2011), 4319-4329.
doi: 10.1090/S0002-9939-2011-11217-6.![]() ![]() ![]() |
[22] |
M. Kowalczyk, Y. Liu and F. Pacard, The space of 4-ended solutions to the Allen-Cahn equation on the plane, Ann. Inst. H. Poincaré Anal. Non Linéaire, 29 (2012), 761-781.
doi: 10.1016/j.anihpc.2012.04.003.![]() ![]() ![]() |
[23] |
J. N. Mather, Existence of quasi–periodic orbits for twist homeomorphisms of the annulus, Topology, 21 (1982), 457-467.
doi: 10.1016/0040-9383(82)90023-4.![]() ![]() ![]() |
[24] |
J. N. Mather, Variational construction of connecting orbits, Ann. Inst. Fourier (Grenoble), 43 (1993), 1349-1386.
doi: 10.5802/aif.1377.![]() ![]() ![]() |
[25] |
J. Moser, Minimal solutions of a variational problems on a torus, Ann. Inst. H. Poincaré Anal. Non Linéaire, 3 (1986), 229-272.
doi: 10.1016/S0294-1449(16)30387-0.![]() ![]() ![]() |
[26] |
P. Montecchiari and P. H. Rabinowitz, On the existence of multi-transition solutions for a class of elliptic systems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 199-219.
doi: 10.1016/j.anihpc.2014.10.001.![]() ![]() ![]() |
[27] |
F. Pacard and J. Wei, Stable solutions of the Allen-Cahn equation in dimension $8$ and minimal cones, J. Funct. Anal., 264 (2013), 1131-1167.
doi: 10.1016/j.jfa.2012.03.010.![]() ![]() ![]() |
[28] |
P. H. Rabinowitz, Connecting orbits for a reversible Hamiltonian system, Ergodic Theory Dynam. Systems, 20 (2000), 1767-1784.
doi: 10.1017/S0143385700000985.![]() ![]() ![]() |
[29] |
P. H. Rabinowitz, On a class of reversible elliptic systems, Netw. Heterog. Media, 7 (2012), 927-939.
doi: 10.3934/nhm.2012.7.927.![]() ![]() ![]() |
[30] |
P. H. Rabinowitz, A note on a class of reversible elliptic systems, Adv. Nonlinear Stud., 12 (2012), 851-875.
doi: 10.1515/ans-2012-0411.![]() ![]() ![]() |
[31] |
P. H. Rabinowitz and E. Stredulinsky, Extensions of Moser–Bangert Theory: Locally Minimal Solutions, Progr. Nonlinear Differential Equations Appl., 81, Birkhauser, Boston, 2011.
![]() |
[32] |
M. Schatzman, On the stability of the saddle solution of Allen-Cahn's equation, Proc. Roy. Soc. Edinburgh Sect. A, 125 (1995), 1241-1275.
doi: 10.1017/S0308210500030493.![]() ![]() ![]() |
[33] |
E. Valdinoci, Plane-like minimizers in periodic media: Jet flows and Ginzburg-Landau-type functionals, J. Reine Angew. Math., 574 (2004), 147-185.
doi: 10.1515/crll.2004.068.![]() ![]() ![]() |
The decomposition of the triangular set