
-
Previous Article
Opinion formation in voting processes under bounded confidence
- NHM Home
- This Issue
-
Next Article
Saddle solutions for a class of systems of periodic and reversible semilinear elliptic equations
Optimal reinforcing networks for elastic membranes
1. | Dipartimento di Matematica, Università di Pisa, l.go B. Pontecorvo 5, 56127 Pisa, Italy |
2. | Dipartimento di Matematica e an, 80126 Napoli, Italy |
3. | Laboratoire Jean Kuntzmann, Université Grenoble Alpes, 38041 Grenoble, France |
In this paper we study the optimal reinforcement of an elastic membrane, fixed at its boundary, by means of a network (connected one-dimensional structure), that has to be found in a suitable admissible class. We show the existence of an optimal network, and observe that such network carries a multiplicity that in principle can be strictly larger than one. Some numerical simulations are shown to confirm this issue and to illustrate the complexity of the optimal network when the total length becomes large.
References:
[1] |
G. Alberti and M. Ottolini,
On the structure of continua with finite length and Golab's semicontinuity theorem, Nonlinear Anal., 153 (2017), 35-55.
doi: 10.1016/j.na.2016.10.012. |
[2] |
E. Acerbi, G. Buttazzo and D. Percivale,
Thin inclusions in linear elasticity: A variational approach, J. Reine Angew. Math., 386 (1988), 99-115.
doi: 10.1515/crll.1988.386.99. |
[3] |
M. Beckmann,
A continuous model of transportation, Econometrica, 20 (1952), 643-660.
doi: 10.2307/1907646. |
[4] |
G. Bouchitté, G. Buttazzo and P. Seppecher,
Energies with respect to a measure and applications to low dimensional structures, Calc. Var. Partial Differential Equations, 5 (1996), 37-54.
doi: 10.1007/s005260050058. |
[5] |
L. Brasco, G. Carlier and F. Santambrogio,
Congested traffic dynamics, weak flows and very degenerate elliptic equations, J. Math. Pures Appl., 93 (2010), 652-671.
doi: 10.1016/j.matpur.2010.03.010. |
[6] |
G. Buttazzo, G. Carlier and S. Guarino Lo Bianco,
Optimal regions for congested transport, ESAIM Math. Model. Numer. Anal., 49 (2015), 1607-1619.
doi: 10.1051/m2an/2015022. |
[7] |
G. Buttazzo, É. Oudet and B. Velichkov,
A free boundary problem arising in PDE optimization, Calc. Var. Partial Differential Equations, 54 (2015), 3829-3856.
doi: 10.1007/s00526-015-0923-1. |
[8] |
G. Buttazzo, É. Oudet and E. Stepanov, Optimal transportation problems with free Dirichlet regions, in Variational Methods for Discontinuous Structures, Progr. Nonlinear Differential Equations Appl., 51, Birkhäuser, Basel, 2002, 41–65. |
[9] |
G. Buttazzo and F. Santambrogio,
Asymptotical compliance optimization for connected networks, Netw. Heterog. Media, 2 (2007), 761-777.
doi: 10.3934/nhm.2007.2.761. |
[10] |
G. Buttazzo, F. Santambrogio and N. Varchon,
Asymptotics of an optimal compliance-location problem, ESAIM Control Optim. Calc. Var., 12 (2006), 752-769.
doi: 10.1051/cocv:2006020. |
[11] |
G. Buttazzo and N. Varchon,
On the optimal reinforcement of an elastic membrane, Riv. Mat. Univ. Parma (Ser. 7), 4 (2005), 115-125.
|
[12] |
Y.-H. Dai and R. Fletcher,
New algorithms for singly linearly constrained quadratic programs subject to lower and upper bounds, Math. Program. (Ser. A), 106 (2006), 403-421.
doi: 10.1007/s10107-005-0595-2. |
[13] |
K. J. Falconer, The Geometry of Fractal Sets, Cambridge Tracts in Mathematics, 85, Cambridge University Press, Cambridge, 1986.
![]() |
[14] |
S. Golab, Sur quelques points de la théorie de la longueur, Ann. Soc. Polon. Math., 7 (1929), 227-241. Google Scholar |
[15] |
S. G. Johnson, The NLopt nonlinear-optimization package., Available from: http://ab-initio.mit.edu/nlopt. Google Scholar |
[16] |
S. J. N. Mosconi and P. Tilli,
Γ-convergence for the irrigation problem, J. Convex Anal., 12 (2005), 145-158.
|
[17] |
E. Sánchez-Palencia, Nonhomogeneous Media and Vibration Theory, Lecture Notes in Physics, 127, Springer-Verlag, Berlin-New York, 1980. |
[18] |
J. G. Wardrop,
Some theoretical aspects of road traffic research, Proceedings of the Institution of Civil Engineers, 1 (1952), 325-362.
doi: 10.1680/ipeds.1952.11362. |
show all references
References:
[1] |
G. Alberti and M. Ottolini,
On the structure of continua with finite length and Golab's semicontinuity theorem, Nonlinear Anal., 153 (2017), 35-55.
doi: 10.1016/j.na.2016.10.012. |
[2] |
E. Acerbi, G. Buttazzo and D. Percivale,
Thin inclusions in linear elasticity: A variational approach, J. Reine Angew. Math., 386 (1988), 99-115.
doi: 10.1515/crll.1988.386.99. |
[3] |
M. Beckmann,
A continuous model of transportation, Econometrica, 20 (1952), 643-660.
doi: 10.2307/1907646. |
[4] |
G. Bouchitté, G. Buttazzo and P. Seppecher,
Energies with respect to a measure and applications to low dimensional structures, Calc. Var. Partial Differential Equations, 5 (1996), 37-54.
doi: 10.1007/s005260050058. |
[5] |
L. Brasco, G. Carlier and F. Santambrogio,
Congested traffic dynamics, weak flows and very degenerate elliptic equations, J. Math. Pures Appl., 93 (2010), 652-671.
doi: 10.1016/j.matpur.2010.03.010. |
[6] |
G. Buttazzo, G. Carlier and S. Guarino Lo Bianco,
Optimal regions for congested transport, ESAIM Math. Model. Numer. Anal., 49 (2015), 1607-1619.
doi: 10.1051/m2an/2015022. |
[7] |
G. Buttazzo, É. Oudet and B. Velichkov,
A free boundary problem arising in PDE optimization, Calc. Var. Partial Differential Equations, 54 (2015), 3829-3856.
doi: 10.1007/s00526-015-0923-1. |
[8] |
G. Buttazzo, É. Oudet and E. Stepanov, Optimal transportation problems with free Dirichlet regions, in Variational Methods for Discontinuous Structures, Progr. Nonlinear Differential Equations Appl., 51, Birkhäuser, Basel, 2002, 41–65. |
[9] |
G. Buttazzo and F. Santambrogio,
Asymptotical compliance optimization for connected networks, Netw. Heterog. Media, 2 (2007), 761-777.
doi: 10.3934/nhm.2007.2.761. |
[10] |
G. Buttazzo, F. Santambrogio and N. Varchon,
Asymptotics of an optimal compliance-location problem, ESAIM Control Optim. Calc. Var., 12 (2006), 752-769.
doi: 10.1051/cocv:2006020. |
[11] |
G. Buttazzo and N. Varchon,
On the optimal reinforcement of an elastic membrane, Riv. Mat. Univ. Parma (Ser. 7), 4 (2005), 115-125.
|
[12] |
Y.-H. Dai and R. Fletcher,
New algorithms for singly linearly constrained quadratic programs subject to lower and upper bounds, Math. Program. (Ser. A), 106 (2006), 403-421.
doi: 10.1007/s10107-005-0595-2. |
[13] |
K. J. Falconer, The Geometry of Fractal Sets, Cambridge Tracts in Mathematics, 85, Cambridge University Press, Cambridge, 1986.
![]() |
[14] |
S. Golab, Sur quelques points de la théorie de la longueur, Ann. Soc. Polon. Math., 7 (1929), 227-241. Google Scholar |
[15] |
S. G. Johnson, The NLopt nonlinear-optimization package., Available from: http://ab-initio.mit.edu/nlopt. Google Scholar |
[16] |
S. J. N. Mosconi and P. Tilli,
Γ-convergence for the irrigation problem, J. Convex Anal., 12 (2005), 145-158.
|
[17] |
E. Sánchez-Palencia, Nonhomogeneous Media and Vibration Theory, Lecture Notes in Physics, 127, Springer-Verlag, Berlin-New York, 1980. |
[18] |
J. G. Wardrop,
Some theoretical aspects of road traffic research, Proceedings of the Institution of Civil Engineers, 1 (1952), 325-362.
doi: 10.1680/ipeds.1952.11362. |



Length constraint | Theoretical guesses | Computed optimal networks |
1 | -0.179471 (radius) | -0.178873 |
2 | -0.165095 (diameter) | -0.161944 |
3 | -0.152676 (star) | -0.149601 |
4 | -0.141969 (cross) | -0.138076 |
5 | - | -0.127661 |
6 | - | -0.117140 |
Length constraint | Theoretical guesses | Computed optimal networks |
1 | -0.179471 (radius) | -0.178873 |
2 | -0.165095 (diameter) | -0.161944 |
3 | -0.152676 (star) | -0.149601 |
4 | -0.141969 (cross) | -0.138076 |
5 | - | -0.127661 |
6 | - | -0.117140 |
[1] |
Bingyan Liu, Xiongbing Ye, Xianzhou Dong, Lei Ni. Branching improved Deep Q Networks for solving pursuit-evasion strategy solution of spacecraft. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021016 |
[2] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033 |
[3] |
Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020374 |
[4] |
Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325 |
[5] |
Xiaoxian Tang, Jie Wang. Bistability of sequestration networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1337-1357. doi: 10.3934/dcdsb.2020165 |
[6] |
Patrick W. Dondl, Martin Jesenko. Threshold phenomenon for homogenized fronts in random elastic media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 353-372. doi: 10.3934/dcdss.2020329 |
[7] |
Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075 |
[8] |
Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021004 |
[9] |
D. R. Michiel Renger, Johannes Zimmer. Orthogonality of fluxes in general nonlinear reaction networks. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 205-217. doi: 10.3934/dcdss.2020346 |
[10] |
Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344 |
[11] |
Lars Grüne. Computing Lyapunov functions using deep neural networks. Journal of Computational Dynamics, 2020 doi: 10.3934/jcd.2021006 |
[12] |
Pedro Aceves-Sanchez, Benjamin Aymard, Diane Peurichard, Pol Kennel, Anne Lorsignol, Franck Plouraboué, Louis Casteilla, Pierre Degond. A new model for the emergence of blood capillary networks. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2021001 |
[13] |
Leslaw Skrzypek, Yuncheng You. Feedback synchronization of FHN cellular neural networks. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021001 |
[14] |
Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020395 |
[15] |
Hong Fu, Mingwu Liu, Bo Chen. Supplier's investment in manufacturer's quality improvement with equity holding. Journal of Industrial & Management Optimization, 2021, 17 (2) : 649-668. doi: 10.3934/jimo.2019127 |
[16] |
Skyler Simmons. Stability of broucke's isosceles orbit. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021015 |
[17] |
Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002 |
[18] |
Jia Cai, Guanglong Xu, Zhensheng Hu. Sketch-based image retrieval via CAT loss with elastic net regularization. Mathematical Foundations of Computing, 2020, 3 (4) : 219-227. doi: 10.3934/mfc.2020013 |
[19] |
Hongfei Yang, Xiaofeng Ding, Raymond Chan, Hui Hu, Yaxin Peng, Tieyong Zeng. A new initialization method based on normed statistical spaces in deep networks. Inverse Problems & Imaging, 2021, 15 (1) : 147-158. doi: 10.3934/ipi.2020045 |
[20] |
François Ledrappier. Three problems solved by Sébastien Gouëzel. Journal of Modern Dynamics, 2020, 16: 373-387. doi: 10.3934/jmd.2020015 |
2019 Impact Factor: 1.053
Tools
Metrics
Other articles
by authors
[Back to Top]