December  2019, 14(4): 759-769. doi: 10.3934/nhm.2019030

Remarks on the Schrödinger-Lohe model

Department of Mathematics, Chung-Ang University, Seoul 156-756, Republic of Korea

* Corresponding author: Hyungjin Huh

Received  October 2018 Revised  July 2019 Published  October 2019

Fund Project: This research was supported by LG Yonam Foundation (of Korea) and Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education (2017R1D1A1B03028308).

We study the Schrödinger-Lohe model. Making use of the principal fundamental matrix $ Y $ of linear ODEs with variable coefficients, the coupled nonlinear Schrödinger-Lohe system is transformed into the decoupled linear Schrödinger equations. The boundedness of $ Y $ is shown for the case of complete synchronization. We also study the cases where the principal fundamental matrices can be derived explicitly.

Citation: Hyungjin Huh. Remarks on the Schrödinger-Lohe model. Networks and Heterogeneous Media, 2019, 14 (4) : 759-769. doi: 10.3934/nhm.2019030
References:
[1]

P. Antonelli and P. Marcati, A model of synchronization over quantum networks, J. Phys. A, 50 (2017), 315101, 19 pp. doi: 10.1088/1751-8121/aa79c9.

[2]

R. Bellman, Stability Theory of Differential Equations, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1953.

[3]

S. BlanesF. CasasJ. A. Oteo and J. Ros, Magnus and Fer expansions for matrix differential equations: The convergence problem, J. Phys. A, 31 (1998), 259-268.  doi: 10.1088/0305-4470/31/1/023.

[4]

S. BlanesF. CasasJ. A. Oteo and J. Ros, The Magnus expansion and some of its applications, Phys. Rep., 470 (2009), 151-238.  doi: 10.1016/j.physrep.2008.11.001.

[5]

S.-H. Choi, J. Cho and S.-Y. Ha, Practical quantum synchronization for the Schrödinger-Lohe system, J. Phys. A, 49 (2016), 205203, 17 pp. doi: 10.1088/1751-8113/49/20/205203.

[6]

S.-H. Choi and S.-Y. Ha, Quantum synchronization of the Schrödinger-Lohe model, J. Phys. A, 47 (2014), 355104, 16 pp. doi: 10.1088/1751-8113/47/35/355104.

[7]

H. Huh and S.-Y. Ha, Dynamical system approach to synchronization of the coupled Schrödinger-Lohe system, Quart. Appl. Math., 75 (2017), 555-579.  doi: 10.1090/qam/1465.

[8]

H. Huh, S.-Y. Ha and D. Kim, Emergent behaviors of the Schrödinger-Lohe model on cooperative-competitive networks, J. Differential Equations, 263 (2017), 8295–8321. doi: 10.1016/j.jde.2017.08.050.

[9]

H. Huh, S.-Y. Ha and D. Kim, Asymptotic behavior and stability for the Schrödinger-Lohe model, J. Math. Phys., 59 (2018), 102701, 21 pp. doi: 10.1063/1.5041463.

[10]

M. A. Lohe, Quantum synchronization over quantum networks, J. Phys. A, 43 (2010), 465301, 20 pp. doi: 10.1088/1751-8113/43/46/465301.

[11]

M. A. Lohe, Non-Abelian Kuramoto model and synchronization, J. Phys. A, 42 (2009), 395101, 25 pp. doi: 10.1088/1751-8113/42/39/395101.

[12]

W. Magnus, On the exponential solution of differential equations for a linear operator, Comm. Pure Appl. Math., 7 (1954), 649-673.  doi: 10.1002/cpa.3160070404.

show all references

References:
[1]

P. Antonelli and P. Marcati, A model of synchronization over quantum networks, J. Phys. A, 50 (2017), 315101, 19 pp. doi: 10.1088/1751-8121/aa79c9.

[2]

R. Bellman, Stability Theory of Differential Equations, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1953.

[3]

S. BlanesF. CasasJ. A. Oteo and J. Ros, Magnus and Fer expansions for matrix differential equations: The convergence problem, J. Phys. A, 31 (1998), 259-268.  doi: 10.1088/0305-4470/31/1/023.

[4]

S. BlanesF. CasasJ. A. Oteo and J. Ros, The Magnus expansion and some of its applications, Phys. Rep., 470 (2009), 151-238.  doi: 10.1016/j.physrep.2008.11.001.

[5]

S.-H. Choi, J. Cho and S.-Y. Ha, Practical quantum synchronization for the Schrödinger-Lohe system, J. Phys. A, 49 (2016), 205203, 17 pp. doi: 10.1088/1751-8113/49/20/205203.

[6]

S.-H. Choi and S.-Y. Ha, Quantum synchronization of the Schrödinger-Lohe model, J. Phys. A, 47 (2014), 355104, 16 pp. doi: 10.1088/1751-8113/47/35/355104.

[7]

H. Huh and S.-Y. Ha, Dynamical system approach to synchronization of the coupled Schrödinger-Lohe system, Quart. Appl. Math., 75 (2017), 555-579.  doi: 10.1090/qam/1465.

[8]

H. Huh, S.-Y. Ha and D. Kim, Emergent behaviors of the Schrödinger-Lohe model on cooperative-competitive networks, J. Differential Equations, 263 (2017), 8295–8321. doi: 10.1016/j.jde.2017.08.050.

[9]

H. Huh, S.-Y. Ha and D. Kim, Asymptotic behavior and stability for the Schrödinger-Lohe model, J. Math. Phys., 59 (2018), 102701, 21 pp. doi: 10.1063/1.5041463.

[10]

M. A. Lohe, Quantum synchronization over quantum networks, J. Phys. A, 43 (2010), 465301, 20 pp. doi: 10.1088/1751-8113/43/46/465301.

[11]

M. A. Lohe, Non-Abelian Kuramoto model and synchronization, J. Phys. A, 42 (2009), 395101, 25 pp. doi: 10.1088/1751-8113/42/39/395101.

[12]

W. Magnus, On the exponential solution of differential equations for a linear operator, Comm. Pure Appl. Math., 7 (1954), 649-673.  doi: 10.1002/cpa.3160070404.

[1]

Seung-Yeal Ha, Hansol Park. Emergent behaviors of the generalized Lohe matrix model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4227-4261. doi: 10.3934/dcdsb.2020286

[2]

M. Burak Erdoǧan, William R. Green. Dispersive estimates for matrix Schrödinger operators in dimension two. Discrete and Continuous Dynamical Systems, 2013, 33 (10) : 4473-4495. doi: 10.3934/dcds.2013.33.4473

[3]

GUANGBING LI. Positive solution for quasilinear Schrödinger equations with a parameter. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1803-1816. doi: 10.3934/cpaa.2015.14.1803

[4]

Yitong Guo, Bingo Wing-Kuen Ling. Principal component analysis with drop rank covariance matrix. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2345-2366. doi: 10.3934/jimo.2020072

[5]

Huseyin Coskun. Nonlinear decomposition principle and fundamental matrix solutions for dynamic compartmental systems. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6553-6605. doi: 10.3934/dcdsb.2019155

[6]

Gökçe Dİlek Küçük, Gabil Yagub, Ercan Çelİk. On the existence and uniqueness of the solution of an optimal control problem for Schrödinger equation. Discrete and Continuous Dynamical Systems - S, 2019, 12 (3) : 503-512. doi: 10.3934/dcdss.2019033

[7]

Fouad Hadj Selem, Hiroaki Kikuchi, Juncheng Wei. Existence and uniqueness of singular solution to stationary Schrödinger equation with supercritical nonlinearity. Discrete and Continuous Dynamical Systems, 2013, 33 (10) : 4613-4626. doi: 10.3934/dcds.2013.33.4613

[8]

Zhengping Wang, Huan-Song Zhou. Radial sign-changing solution for fractional Schrödinger equation. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 499-508. doi: 10.3934/dcds.2016.36.499

[9]

Xiang-Dong Fang. A positive solution for an asymptotically cubic quasilinear Schrödinger equation. Communications on Pure and Applied Analysis, 2019, 18 (1) : 51-64. doi: 10.3934/cpaa.2019004

[10]

Yu Su. Ground state solution of critical Schrödinger equation with singular potential. Communications on Pure and Applied Analysis, 2021, 20 (10) : 3347-3371. doi: 10.3934/cpaa.2021108

[11]

Seung-Yeal Ha, Myeongju Kang, Hansol Park. Collective behaviors of the Lohe Hermitian sphere model with inertia. Communications on Pure and Applied Analysis, 2021, 20 (7&8) : 2613-2641. doi: 10.3934/cpaa.2021046

[12]

Hui Zhang, Jian-Feng Cai, Lizhi Cheng, Jubo Zhu. Strongly convex programming for exact matrix completion and robust principal component analysis. Inverse Problems and Imaging, 2012, 6 (2) : 357-372. doi: 10.3934/ipi.2012.6.357

[13]

Wolfgang Wagner. A random cloud model for the Schrödinger equation. Kinetic and Related Models, 2014, 7 (2) : 361-379. doi: 10.3934/krm.2014.7.361

[14]

Manh Hong Duong, Hoang Minh Tran. On the fundamental solution and a variational formulation for a degenerate diffusion of Kolmogorov type. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3407-3438. doi: 10.3934/dcds.2018146

[15]

V.N. Malozemov, A.V. Omelchenko. On a discrete optimal control problem with an explicit solution. Journal of Industrial and Management Optimization, 2006, 2 (1) : 55-62. doi: 10.3934/jimo.2006.2.55

[16]

Paolo Antonelli, Seung-Yeal Ha, Dohyun Kim, Pierangelo Marcati. The Wigner-Lohe model for quantum synchronization and its emergent dynamics. Networks and Heterogeneous Media, 2017, 12 (3) : 403-416. doi: 10.3934/nhm.2017018

[17]

Junhyeok Byeon, Seung-Yeal Ha, Hansol Park. Asymptotic interplay of states and adaptive coupling gains in the Lohe Hermitian sphere model. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022007

[18]

Seung-Yeal Ha, Gyuyoung Hwang, Dohyun Kim. On the complete aggregation of the Wigner-Lohe model for identical potentials. Networks and Heterogeneous Media, 2022  doi: 10.3934/nhm.2022022

[19]

Chong Lai, Lishan Liu, Rui Li. The optimal solution to a principal-agent problem with unknown agent ability. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2579-2605. doi: 10.3934/jimo.2020084

[20]

Xuecheng Wang. Global solution for the $3D$ quadratic Schrödinger equation of $Q(u, \bar{u}$) type. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 5037-5048. doi: 10.3934/dcds.2017217

2020 Impact Factor: 1.213

Metrics

  • PDF downloads (363)
  • HTML views (162)
  • Cited by (0)

Other articles
by authors

[Back to Top]