-
Previous Article
A discrete districting plan
- NHM Home
- This Issue
-
Next Article
Asymptotic structure of the spectrum in a Dirichlet-strip with double periodic perforations
Remarks on the Schrödinger-Lohe model
Department of Mathematics, Chung-Ang University, Seoul 156-756, Republic of Korea |
We study the Schrödinger-Lohe model. Making use of the principal fundamental matrix $ Y $ of linear ODEs with variable coefficients, the coupled nonlinear Schrödinger-Lohe system is transformed into the decoupled linear Schrödinger equations. The boundedness of $ Y $ is shown for the case of complete synchronization. We also study the cases where the principal fundamental matrices can be derived explicitly.
References:
[1] |
P. Antonelli and P. Marcati, A model of synchronization over quantum networks, J. Phys. A, 50 (2017), 315101, 19 pp.
doi: 10.1088/1751-8121/aa79c9. |
[2] |
R. Bellman, Stability Theory of Differential Equations, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1953. |
[3] |
S. Blanes, F. Casas, J. A. Oteo and J. Ros,
Magnus and Fer expansions for matrix differential equations: The convergence problem, J. Phys. A, 31 (1998), 259-268.
doi: 10.1088/0305-4470/31/1/023. |
[4] |
S. Blanes, F. Casas, J. A. Oteo and J. Ros,
The Magnus expansion and some of its applications, Phys. Rep., 470 (2009), 151-238.
doi: 10.1016/j.physrep.2008.11.001. |
[5] |
S.-H. Choi, J. Cho and S.-Y. Ha, Practical quantum synchronization for the Schrödinger-Lohe system, J. Phys. A, 49 (2016), 205203, 17 pp.
doi: 10.1088/1751-8113/49/20/205203. |
[6] |
S.-H. Choi and S.-Y. Ha, Quantum synchronization of the Schrödinger-Lohe model, J. Phys. A, 47 (2014), 355104, 16 pp.
doi: 10.1088/1751-8113/47/35/355104. |
[7] |
H. Huh and S.-Y. Ha,
Dynamical system approach to synchronization of the coupled Schrödinger-Lohe system, Quart. Appl. Math., 75 (2017), 555-579.
doi: 10.1090/qam/1465. |
[8] |
H. Huh, S.-Y. Ha and D. Kim, Emergent behaviors of the Schrödinger-Lohe model on cooperative-competitive networks, J. Differential Equations, 263 (2017), 8295–8321.
doi: 10.1016/j.jde.2017.08.050. |
[9] |
H. Huh, S.-Y. Ha and D. Kim, Asymptotic behavior and stability for the Schrödinger-Lohe model, J. Math. Phys., 59 (2018), 102701, 21 pp.
doi: 10.1063/1.5041463. |
[10] |
M. A. Lohe, Quantum synchronization over quantum networks, J. Phys. A, 43 (2010), 465301, 20 pp.
doi: 10.1088/1751-8113/43/46/465301. |
[11] |
M. A. Lohe, Non-Abelian Kuramoto model and synchronization, J. Phys. A, 42 (2009), 395101, 25 pp.
doi: 10.1088/1751-8113/42/39/395101. |
[12] |
W. Magnus,
On the exponential solution of differential equations for a linear operator, Comm. Pure Appl. Math., 7 (1954), 649-673.
doi: 10.1002/cpa.3160070404. |
show all references
References:
[1] |
P. Antonelli and P. Marcati, A model of synchronization over quantum networks, J. Phys. A, 50 (2017), 315101, 19 pp.
doi: 10.1088/1751-8121/aa79c9. |
[2] |
R. Bellman, Stability Theory of Differential Equations, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1953. |
[3] |
S. Blanes, F. Casas, J. A. Oteo and J. Ros,
Magnus and Fer expansions for matrix differential equations: The convergence problem, J. Phys. A, 31 (1998), 259-268.
doi: 10.1088/0305-4470/31/1/023. |
[4] |
S. Blanes, F. Casas, J. A. Oteo and J. Ros,
The Magnus expansion and some of its applications, Phys. Rep., 470 (2009), 151-238.
doi: 10.1016/j.physrep.2008.11.001. |
[5] |
S.-H. Choi, J. Cho and S.-Y. Ha, Practical quantum synchronization for the Schrödinger-Lohe system, J. Phys. A, 49 (2016), 205203, 17 pp.
doi: 10.1088/1751-8113/49/20/205203. |
[6] |
S.-H. Choi and S.-Y. Ha, Quantum synchronization of the Schrödinger-Lohe model, J. Phys. A, 47 (2014), 355104, 16 pp.
doi: 10.1088/1751-8113/47/35/355104. |
[7] |
H. Huh and S.-Y. Ha,
Dynamical system approach to synchronization of the coupled Schrödinger-Lohe system, Quart. Appl. Math., 75 (2017), 555-579.
doi: 10.1090/qam/1465. |
[8] |
H. Huh, S.-Y. Ha and D. Kim, Emergent behaviors of the Schrödinger-Lohe model on cooperative-competitive networks, J. Differential Equations, 263 (2017), 8295–8321.
doi: 10.1016/j.jde.2017.08.050. |
[9] |
H. Huh, S.-Y. Ha and D. Kim, Asymptotic behavior and stability for the Schrödinger-Lohe model, J. Math. Phys., 59 (2018), 102701, 21 pp.
doi: 10.1063/1.5041463. |
[10] |
M. A. Lohe, Quantum synchronization over quantum networks, J. Phys. A, 43 (2010), 465301, 20 pp.
doi: 10.1088/1751-8113/43/46/465301. |
[11] |
M. A. Lohe, Non-Abelian Kuramoto model and synchronization, J. Phys. A, 42 (2009), 395101, 25 pp.
doi: 10.1088/1751-8113/42/39/395101. |
[12] |
W. Magnus,
On the exponential solution of differential equations for a linear operator, Comm. Pure Appl. Math., 7 (1954), 649-673.
doi: 10.1002/cpa.3160070404. |
[1] |
Seung-Yeal Ha, Hansol Park. Emergent behaviors of the generalized Lohe matrix model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4227-4261. doi: 10.3934/dcdsb.2020286 |
[2] |
M. Burak Erdoǧan, William R. Green. Dispersive estimates for matrix Schrödinger operators in dimension two. Discrete and Continuous Dynamical Systems, 2013, 33 (10) : 4473-4495. doi: 10.3934/dcds.2013.33.4473 |
[3] |
GUANGBING LI. Positive solution for quasilinear Schrödinger equations with a parameter. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1803-1816. doi: 10.3934/cpaa.2015.14.1803 |
[4] |
Yitong Guo, Bingo Wing-Kuen Ling. Principal component analysis with drop rank covariance matrix. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2345-2366. doi: 10.3934/jimo.2020072 |
[5] |
Huseyin Coskun. Nonlinear decomposition principle and fundamental matrix solutions for dynamic compartmental systems. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6553-6605. doi: 10.3934/dcdsb.2019155 |
[6] |
Gökçe Dİlek Küçük, Gabil Yagub, Ercan Çelİk. On the existence and uniqueness of the solution of an optimal control problem for Schrödinger equation. Discrete and Continuous Dynamical Systems - S, 2019, 12 (3) : 503-512. doi: 10.3934/dcdss.2019033 |
[7] |
Fouad Hadj Selem, Hiroaki Kikuchi, Juncheng Wei. Existence and uniqueness of singular solution to stationary Schrödinger equation with supercritical nonlinearity. Discrete and Continuous Dynamical Systems, 2013, 33 (10) : 4613-4626. doi: 10.3934/dcds.2013.33.4613 |
[8] |
Zhengping Wang, Huan-Song Zhou. Radial sign-changing solution for fractional Schrödinger equation. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 499-508. doi: 10.3934/dcds.2016.36.499 |
[9] |
Xiang-Dong Fang. A positive solution for an asymptotically cubic quasilinear Schrödinger equation. Communications on Pure and Applied Analysis, 2019, 18 (1) : 51-64. doi: 10.3934/cpaa.2019004 |
[10] |
Yu Su. Ground state solution of critical Schrödinger equation with singular potential. Communications on Pure and Applied Analysis, 2021, 20 (10) : 3347-3371. doi: 10.3934/cpaa.2021108 |
[11] |
Seung-Yeal Ha, Myeongju Kang, Hansol Park. Collective behaviors of the Lohe Hermitian sphere model with inertia. Communications on Pure and Applied Analysis, 2021, 20 (7&8) : 2613-2641. doi: 10.3934/cpaa.2021046 |
[12] |
Hui Zhang, Jian-Feng Cai, Lizhi Cheng, Jubo Zhu. Strongly convex programming for exact matrix completion and robust principal component analysis. Inverse Problems and Imaging, 2012, 6 (2) : 357-372. doi: 10.3934/ipi.2012.6.357 |
[13] |
Wolfgang Wagner. A random cloud model for the Schrödinger equation. Kinetic and Related Models, 2014, 7 (2) : 361-379. doi: 10.3934/krm.2014.7.361 |
[14] |
Manh Hong Duong, Hoang Minh Tran. On the fundamental solution and a variational formulation for a degenerate diffusion of Kolmogorov type. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3407-3438. doi: 10.3934/dcds.2018146 |
[15] |
V.N. Malozemov, A.V. Omelchenko. On a discrete optimal control problem with an explicit solution. Journal of Industrial and Management Optimization, 2006, 2 (1) : 55-62. doi: 10.3934/jimo.2006.2.55 |
[16] |
Paolo Antonelli, Seung-Yeal Ha, Dohyun Kim, Pierangelo Marcati. The Wigner-Lohe model for quantum synchronization and its emergent dynamics. Networks and Heterogeneous Media, 2017, 12 (3) : 403-416. doi: 10.3934/nhm.2017018 |
[17] |
Junhyeok Byeon, Seung-Yeal Ha, Hansol Park. Asymptotic interplay of states and adaptive coupling gains in the Lohe Hermitian sphere model. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022007 |
[18] |
Seung-Yeal Ha, Gyuyoung Hwang, Dohyun Kim. On the complete aggregation of the Wigner-Lohe model for identical potentials. Networks and Heterogeneous Media, 2022 doi: 10.3934/nhm.2022022 |
[19] |
Chong Lai, Lishan Liu, Rui Li. The optimal solution to a principal-agent problem with unknown agent ability. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2579-2605. doi: 10.3934/jimo.2020084 |
[20] |
Xuecheng Wang. Global solution for the $3D$ quadratic Schrödinger equation of $Q(u, \bar{u}$) type. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 5037-5048. doi: 10.3934/dcds.2017217 |
2020 Impact Factor: 1.213
Tools
Metrics
Other articles
by authors
[Back to Top]