December  2020, 15(4): 605-631. doi: 10.3934/nhm.2020016

New coupling conditions for isentropic flow on networks

1. 

Institut für Mathematik, RWTH Aachen University, Templergraben 55, 52062 Aachen, Germany

2. 

Institut für Geometrie und Praktische Mathematik, RWTH Aachen University, Templergraben 55, 52062 Aachen, Germany

* Corresponding author: Yannick Holle

Received  April 2020 Published  December 2020 Early access  July 2020

Fund Project: This work has been funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) projects 320021702/GRK2326 Energy, Entropy, and Dissipative Dynamics (EDDy) and HE5386/18, 19.

We introduce new coupling conditions for isentropic flow on networks based on an artificial density at the junction. The new coupling conditions can be derived from a kinetic model by imposing a condition on energy dissipation. Existence and uniqueness of solutions to the generalized Riemann and Cauchy problem are proven. The result for the generalized Riemann problem is globally in state space. Furthermore, non-increasing energy at the junction and a maximum principle are proven. A numerical example is given in which the new conditions are the only known conditions leading to the physically correct wave types. The approach generalizes to full gas dynamics.

Citation: Yannick Holle, Michael Herty, Michael Westdickenberg. New coupling conditions for isentropic flow on networks. Networks and Heterogeneous Media, 2020, 15 (4) : 605-631. doi: 10.3934/nhm.2020016
References:
[1]

M. K. BandaM. Herty and A. Klar, Coupling conditions for gas networks governed by the isothermal Euler equations, Netw. Heterog. Media, 1 (2006), 295-314.  doi: 10.3934/nhm.2006.1.295.

[2]

M. K. BandaM. Herty and A. Klar, Gas flow in pipeline networks, Netw. Heterog. Media, 1 (2006), 41-46.  doi: 10.3934/nhm.2006.1.41.

[3]

F. Berthelin and F. Bouchut, Solution with finite energy to a BGK system relaxing to isentropic gas dynamics, Ann. Fac. Sci. Toulouse Math., 9 (2000), 605-630.  doi: 10.5802/afst.974.

[4]

F. Berthelin and F. Bouchut, Kinetic invariant domains and relaxation limit from a BGK model to isentropic gas dynamics, Asymtotic Anal., 31 (2002), 153-176. 

[5]

F. Berthelin and F. Bouchut, Weak entropy boundary conditions for isentropic gas dynamics via kinetic relaxation, J. Differential Equations, 185 (2002), 251-270.  doi: 10.1006/jdeq.2001.4161.

[6]

F. Bouchut, Construction of BGK models with a family of kinetic entropies for a given system of conservation laws, J. Statist. Phys., 95 (1999), 113-170.  doi: 10.1023/A:1004525427365.

[7]

A. Bressan, The One-Dimensional Cauchy Problem, in Hyperbolic Systems of Conservation Laws, vol. 20 of Oxford Lecture Series in Mathematics and its Application, Oxford University Press, Oxford, 2000.

[8]

A. BressanS. ČanićM. GaravelloM. Herty and B. Piccoli, Flows on networks: recent results and perspectives, EMS Surv. Math. Sci., 1 (2014), 47-111.  doi: 10.4171/EMSS/2.

[9]

G. M. Cocolite and M. Garavello, Vanishing viscosity for traffic on networks, SIAM J. Math. Anal., 42 (2010), 1761-1783.  doi: 10.1137/090771417.

[10]

R. M. Colombo and M. Garavello, A well posed Riemann problem for the $p$-system at a junction, Netw. Heterog. Media, 1 (2006), 495-511.  doi: 10.3934/nhm.2006.1.495.

[11]

R. M. Colombo and M. Garavello, On the Cauchy problem for the $p$-system at a junction, SIAM J. Math. Anal., 39 (2008), 1456-1471.  doi: 10.1137/060665841.

[12]

R. M. ColomboM. Herty and V. Sachers, On $2\times2$ conservation laws at a junction, SIAM J. Math. Anal., 40 (2008), 605-622.  doi: 10.1137/070690298.

[13]

R. M. Colombo and H. Holden, Isentropic fluid dynamics in a curved pipe, Zeitschrift für angewandte Mathematik und Physik, 67 (2016), 1-10.  doi: 10.1007/s00033-016-0725-0.

[14]

R. M. Colombo and F. Marcellini, Coupling conditions for the 3x3 Euler system, Netw. Heterog. Media, 5 (2010), 675-690.  doi: 10.3934/nhm.2010.5.675.

[15]

R. M. Colombo and C. Mauri, Euler system for compressible fluids at a junction, J. Hyperbolic Differ. Equ., 5 (2008), 547-568.  doi: 10.1142/S0219891608001593.

[16]

C. M. Dafermos, The entropy rate admissibility criterion for solutions of hyperbolic conservation laws, J. Differential Equations, 14 (1973), 202-212.  doi: 10.1016/0022-0396(73)90043-0.

[17]

C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, vol. 325 of Grundlehren der mathematischen Wissenschaften, 3rd edition, Springer-Verlag Berlin Heidelberg, 2010. doi: 10.1007/978-3-642-04048-1.

[18]

F. Dubois and P. LeFloch, Boundary conditions for nonlinear hyperbolic systems of conservation laws, J. Differential Equations, 71 (1988), 93-122.  doi: 10.1016/0022-0396(88)90040-X.

[19]

M. Herty, Coupling conditions for networked systems of Euler equations, SIAM J. Sci. Comput., 30 (2008), 1596-1612.  doi: 10.1137/070688535.

[20]

M. Herty and M. Rascle, Coupling conditions for a class of second-order models for traffic flow, SIAM J. Math. Anal., 38 (2006), 595-616.  doi: 10.1137/05062617X.

[21]

H. Holden and N. H. Risebro, Riemann problems with a kink, SIAM J. Math. Anal., 30 (1999), 497-515.  doi: 10.1137/S0036141097327033.

[22]

Y. Holle, Kinetic relaxation to entropy based coupling conditions for isentropic flow on networks, J. Differential Equations, 269 (2020), 1192-1225.  doi: 10.1016/j.jde.2020.01.005.

[23]

P. T. KanM. M. Santos and Z. Xin, Initial-boundary value problem for conservation laws, Comm. Math. Phys., 186 (1997), 701-730.  doi: 10.1007/s002200050125.

[24]

J. Lang and P. Mindt, Entropy-preserving coupling conditions for one-dimensional Euler systems at junctions, Netw. Heterog. Media, 13 (2018), 177-190.  doi: 10.3934/nhm.2018008.

[25]

P.-L. LionsB. Pertheme and E. Tadmor, Kinetic formulation of the isentropic gas dynamics and $p$-systems, Commun. Math. Phys., 163 (1994), 415-431.  doi: 10.1007/BF02102014.

[26]

T. P. Liu and J. A. Smoller, On the vacuum state for the isentropic gas dynamics equations, Adv. in Appl. Math., 1 (1980), 345-359.  doi: 10.1016/0196-8858(80)90016-0.

[27]

G. A. Reigstad, Existence and uniqueness of solutions to the generalized Riemann problem for isentropic flow, SIAM J. Appl. Math., 75 (2015), 679-702.  doi: 10.1137/140962759.

[28]

G. A. ReigstadT. FlåttenN. E. Haugen and T. Ytrehus, Coupling constants and the generalized Riemann problem for isothermal junction flow, J. Hyperbolic Differ. Equ., 12 (2015), 37-59.  doi: 10.1142/S0219891615500022.

show all references

References:
[1]

M. K. BandaM. Herty and A. Klar, Coupling conditions for gas networks governed by the isothermal Euler equations, Netw. Heterog. Media, 1 (2006), 295-314.  doi: 10.3934/nhm.2006.1.295.

[2]

M. K. BandaM. Herty and A. Klar, Gas flow in pipeline networks, Netw. Heterog. Media, 1 (2006), 41-46.  doi: 10.3934/nhm.2006.1.41.

[3]

F. Berthelin and F. Bouchut, Solution with finite energy to a BGK system relaxing to isentropic gas dynamics, Ann. Fac. Sci. Toulouse Math., 9 (2000), 605-630.  doi: 10.5802/afst.974.

[4]

F. Berthelin and F. Bouchut, Kinetic invariant domains and relaxation limit from a BGK model to isentropic gas dynamics, Asymtotic Anal., 31 (2002), 153-176. 

[5]

F. Berthelin and F. Bouchut, Weak entropy boundary conditions for isentropic gas dynamics via kinetic relaxation, J. Differential Equations, 185 (2002), 251-270.  doi: 10.1006/jdeq.2001.4161.

[6]

F. Bouchut, Construction of BGK models with a family of kinetic entropies for a given system of conservation laws, J. Statist. Phys., 95 (1999), 113-170.  doi: 10.1023/A:1004525427365.

[7]

A. Bressan, The One-Dimensional Cauchy Problem, in Hyperbolic Systems of Conservation Laws, vol. 20 of Oxford Lecture Series in Mathematics and its Application, Oxford University Press, Oxford, 2000.

[8]

A. BressanS. ČanićM. GaravelloM. Herty and B. Piccoli, Flows on networks: recent results and perspectives, EMS Surv. Math. Sci., 1 (2014), 47-111.  doi: 10.4171/EMSS/2.

[9]

G. M. Cocolite and M. Garavello, Vanishing viscosity for traffic on networks, SIAM J. Math. Anal., 42 (2010), 1761-1783.  doi: 10.1137/090771417.

[10]

R. M. Colombo and M. Garavello, A well posed Riemann problem for the $p$-system at a junction, Netw. Heterog. Media, 1 (2006), 495-511.  doi: 10.3934/nhm.2006.1.495.

[11]

R. M. Colombo and M. Garavello, On the Cauchy problem for the $p$-system at a junction, SIAM J. Math. Anal., 39 (2008), 1456-1471.  doi: 10.1137/060665841.

[12]

R. M. ColomboM. Herty and V. Sachers, On $2\times2$ conservation laws at a junction, SIAM J. Math. Anal., 40 (2008), 605-622.  doi: 10.1137/070690298.

[13]

R. M. Colombo and H. Holden, Isentropic fluid dynamics in a curved pipe, Zeitschrift für angewandte Mathematik und Physik, 67 (2016), 1-10.  doi: 10.1007/s00033-016-0725-0.

[14]

R. M. Colombo and F. Marcellini, Coupling conditions for the 3x3 Euler system, Netw. Heterog. Media, 5 (2010), 675-690.  doi: 10.3934/nhm.2010.5.675.

[15]

R. M. Colombo and C. Mauri, Euler system for compressible fluids at a junction, J. Hyperbolic Differ. Equ., 5 (2008), 547-568.  doi: 10.1142/S0219891608001593.

[16]

C. M. Dafermos, The entropy rate admissibility criterion for solutions of hyperbolic conservation laws, J. Differential Equations, 14 (1973), 202-212.  doi: 10.1016/0022-0396(73)90043-0.

[17]

C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, vol. 325 of Grundlehren der mathematischen Wissenschaften, 3rd edition, Springer-Verlag Berlin Heidelberg, 2010. doi: 10.1007/978-3-642-04048-1.

[18]

F. Dubois and P. LeFloch, Boundary conditions for nonlinear hyperbolic systems of conservation laws, J. Differential Equations, 71 (1988), 93-122.  doi: 10.1016/0022-0396(88)90040-X.

[19]

M. Herty, Coupling conditions for networked systems of Euler equations, SIAM J. Sci. Comput., 30 (2008), 1596-1612.  doi: 10.1137/070688535.

[20]

M. Herty and M. Rascle, Coupling conditions for a class of second-order models for traffic flow, SIAM J. Math. Anal., 38 (2006), 595-616.  doi: 10.1137/05062617X.

[21]

H. Holden and N. H. Risebro, Riemann problems with a kink, SIAM J. Math. Anal., 30 (1999), 497-515.  doi: 10.1137/S0036141097327033.

[22]

Y. Holle, Kinetic relaxation to entropy based coupling conditions for isentropic flow on networks, J. Differential Equations, 269 (2020), 1192-1225.  doi: 10.1016/j.jde.2020.01.005.

[23]

P. T. KanM. M. Santos and Z. Xin, Initial-boundary value problem for conservation laws, Comm. Math. Phys., 186 (1997), 701-730.  doi: 10.1007/s002200050125.

[24]

J. Lang and P. Mindt, Entropy-preserving coupling conditions for one-dimensional Euler systems at junctions, Netw. Heterog. Media, 13 (2018), 177-190.  doi: 10.3934/nhm.2018008.

[25]

P.-L. LionsB. Pertheme and E. Tadmor, Kinetic formulation of the isentropic gas dynamics and $p$-systems, Commun. Math. Phys., 163 (1994), 415-431.  doi: 10.1007/BF02102014.

[26]

T. P. Liu and J. A. Smoller, On the vacuum state for the isentropic gas dynamics equations, Adv. in Appl. Math., 1 (1980), 345-359.  doi: 10.1016/0196-8858(80)90016-0.

[27]

G. A. Reigstad, Existence and uniqueness of solutions to the generalized Riemann problem for isentropic flow, SIAM J. Appl. Math., 75 (2015), 679-702.  doi: 10.1137/140962759.

[28]

G. A. ReigstadT. FlåttenN. E. Haugen and T. Ytrehus, Coupling constants and the generalized Riemann problem for isothermal junction flow, J. Hyperbolic Differ. Equ., 12 (2015), 37-59.  doi: 10.1142/S0219891615500022.

Figure 3.  The boundary Riemann set $ \mathcal V(\rho_*, 0) $
Figure 1.  Construction of $ (\rho_\alpha, u_\alpha) $ and $ (\rho_\beta, u_\beta) $
Figure 2.  The sets $ \mathcal A_* $, $ \mathcal B_* $, $ \mathcal C_* $ and $ \mathcal J_* $
Figure 4.  Level sets for different coupling conditions
Table 1.  Initial data
pipeline $ \hat\rho_{k} $ $ \hat\rho_{k} \hat u_{k} $
1 $ +1.0000 $ $ -1.0000 $
2 $ +1.0000 $ $ +0.5000 $
3 $ +1.0000 $ $ +0.5000 $
pipeline $ \hat\rho_{k} $ $ \hat\rho_{k} \hat u_{k} $
1 $ +1.0000 $ $ -1.0000 $
2 $ +1.0000 $ $ +0.5000 $
3 $ +1.0000 $ $ +0.5000 $
Table 2.  Numerical results
Equal density Equal momentum flux Equal stagnation enthalpy Equal artificial density
pipeline $ \bar\rho_{k} $ $ \bar\rho_{k} \bar u_{k} $ $ \bar\rho_{k} $ $ \bar\rho_{k} \bar u_{k} $ $ \bar\rho_{k} $ $ \bar\rho_{k} \bar u_{k} $ $ \bar\rho_{k} $ $ \bar\rho_{k} \bar u_{k} $
1 $ +1.0000 $ $ -1.0000 $ $ +0.8964 $ $ -1.1981 $ $ +0.8518 $ $ -1.2670 $ $ +1.1776 $ $ -0.5417 $
2 $ +1.0000 $ $ +0.5000 $ $ +1.0266 $ $ +0.5991 $ $ +1.0356 $ $ +0.6335 $ $ +0.9346 $ $ +0.2708 $
3 $ +1.0000 $ $ +0.5000 $ $ +1.0266 $ $ +0.5991 $ $ +1.0356 $ $ +0.6335 $ $ +0.9346 $ $ +0.2708 $
Energy dissipation $ -7.5000\times 10^{-2} $ $ -1.725\times 10^{-2} $ $ \approx 0 $ $ -1.3852\times 10^{-1} $
Equal density Equal momentum flux Equal stagnation enthalpy Equal artificial density
pipeline $ \bar\rho_{k} $ $ \bar\rho_{k} \bar u_{k} $ $ \bar\rho_{k} $ $ \bar\rho_{k} \bar u_{k} $ $ \bar\rho_{k} $ $ \bar\rho_{k} \bar u_{k} $ $ \bar\rho_{k} $ $ \bar\rho_{k} \bar u_{k} $
1 $ +1.0000 $ $ -1.0000 $ $ +0.8964 $ $ -1.1981 $ $ +0.8518 $ $ -1.2670 $ $ +1.1776 $ $ -0.5417 $
2 $ +1.0000 $ $ +0.5000 $ $ +1.0266 $ $ +0.5991 $ $ +1.0356 $ $ +0.6335 $ $ +0.9346 $ $ +0.2708 $
3 $ +1.0000 $ $ +0.5000 $ $ +1.0266 $ $ +0.5991 $ $ +1.0356 $ $ +0.6335 $ $ +0.9346 $ $ +0.2708 $
Energy dissipation $ -7.5000\times 10^{-2} $ $ -1.725\times 10^{-2} $ $ \approx 0 $ $ -1.3852\times 10^{-1} $
Table 3.  Wave types
pipeline Equal density Equal momentum flux Equal stagnation enthalpy Equal artificial density
1 no waves rarefaction wave rarefaction wave shock
2 no waves shock shock rarefaction wave
3 no waves shock shock rarefaction wave
pipeline Equal density Equal momentum flux Equal stagnation enthalpy Equal artificial density
1 no waves rarefaction wave rarefaction wave shock
2 no waves shock shock rarefaction wave
3 no waves shock shock rarefaction wave
[1]

Carlota M. Cuesta, Sabine Hittmeir, Christian Schmeiser. Weak shocks of a BGK kinetic model for isentropic gas dynamics. Kinetic and Related Models, 2010, 3 (2) : 255-279. doi: 10.3934/krm.2010.3.255

[2]

Alberto Bressan, Marta Lewicka. A uniqueness condition for hyperbolic systems of conservation laws. Discrete and Continuous Dynamical Systems, 2000, 6 (3) : 673-682. doi: 10.3934/dcds.2000.6.673

[3]

Evgeny Yu. Panov. On a condition of strong precompactness and the decay of periodic entropy solutions to scalar conservation laws. Networks and Heterogeneous Media, 2016, 11 (2) : 349-367. doi: 10.3934/nhm.2016.11.349

[4]

Eitan Tadmor. Perfect derivatives, conservative differences and entropy stable computation of hyperbolic conservation laws. Discrete and Continuous Dynamical Systems, 2016, 36 (8) : 4579-4598. doi: 10.3934/dcds.2016.36.4579

[5]

Mauro Garavello. A review of conservation laws on networks. Networks and Heterogeneous Media, 2010, 5 (3) : 565-581. doi: 10.3934/nhm.2010.5.565

[6]

Stefano Bianchini, Elio Marconi. On the concentration of entropy for scalar conservation laws. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 73-88. doi: 10.3934/dcdss.2016.9.73

[7]

Laurent Lévi, Julien Jimenez. Coupling of scalar conservation laws in stratified porous media. Conference Publications, 2007, 2007 (Special) : 644-654. doi: 10.3934/proc.2007.2007.644

[8]

Tai-Ping Liu, Shih-Hsien Yu. Hyperbolic conservation laws and dynamic systems. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 143-145. doi: 10.3934/dcds.2000.6.143

[9]

Georges Bastin, B. Haut, Jean-Michel Coron, Brigitte d'Andréa-Novel. Lyapunov stability analysis of networks of scalar conservation laws. Networks and Heterogeneous Media, 2007, 2 (4) : 751-759. doi: 10.3934/nhm.2007.2.751

[10]

Gui-Qiang Chen, Monica Torres. On the structure of solutions of nonlinear hyperbolic systems of conservation laws. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1011-1036. doi: 10.3934/cpaa.2011.10.1011

[11]

Stefano Bianchini. A note on singular limits to hyperbolic systems of conservation laws. Communications on Pure and Applied Analysis, 2003, 2 (1) : 51-64. doi: 10.3934/cpaa.2003.2.51

[12]

Xavier Litrico, Vincent Fromion, Gérard Scorletti. Robust feedforward boundary control of hyperbolic conservation laws. Networks and Heterogeneous Media, 2007, 2 (4) : 717-731. doi: 10.3934/nhm.2007.2.717

[13]

Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185

[14]

Fumioki Asakura, Andrea Corli. The path decomposition technique for systems of hyperbolic conservation laws. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 15-32. doi: 10.3934/dcdss.2016.9.15

[15]

Lijuan Wang, Weike Wang. Pointwise estimates of solutions to conservation laws with nonlocal dissipation-type terms. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2835-2854. doi: 10.3934/cpaa.2019127

[16]

Mapundi K. Banda, Michael Herty, Axel Klar. Coupling conditions for gas networks governed by the isothermal Euler equations. Networks and Heterogeneous Media, 2006, 1 (2) : 295-314. doi: 10.3934/nhm.2006.1.295

[17]

Geng Chen, Ronghua Pan, Shengguo Zhu. A polygonal scheme and the lower bound on density for the isentropic gas dynamics. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 4259-4277. doi: 10.3934/dcds.2019172

[18]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[19]

Young-Sam Kwon. On the well-posedness of entropy solutions for conservation laws with source terms. Discrete and Continuous Dynamical Systems, 2009, 25 (3) : 933-949. doi: 10.3934/dcds.2009.25.933

[20]

Darko Mitrovic. New entropy conditions for scalar conservation laws with discontinuous flux. Discrete and Continuous Dynamical Systems, 2011, 30 (4) : 1191-1210. doi: 10.3934/dcds.2011.30.1191

2020 Impact Factor: 1.213

Metrics

  • PDF downloads (275)
  • HTML views (279)
  • Cited by (0)

[Back to Top]