# American Institute of Mathematical Sciences

September  2020, 15(3): 353-368. doi: 10.3934/nhm.2020022

## Swarms dynamics approach to behavioral economy: Theoretical tools and price sequences

 1 University of Granada, Departamento de Matemática Aplicada, 18071-Granada, Spain, Collegio Carlo Alberto, Torino, Italy, Politecnico Torino, Italy 2 Joint Research Centre, European Commission, Ispra, VA, Italy 3 Centro de Investigación y Estudios de Matemática (CONICET) and Famaf (UNC), Medina Allende s/n, 5000 Córdoba, Argentina 4 Credimi S.p.A., Milano, MI, Italy 5 University of Torino, Torino, Italy, Collegio Carlo Alberto, Torino, Italy

Received  December 2019 Revised  February 2020 Published  September 2020 Early access  September 2020

This paper presents a development of the mathematical theory of swarms towards a systems approach to behavioral dynamics of social and economical systems. The modeling approach accounts for the ability of social entities are to develop a specific strategy which is heterogeneously distributed by interactions which are nonlinearly additive. A detailed application to the modeling of the dynamics of prices in the interaction between buyers and sellers is developed to describe the predictive ability of the model.

Citation: Nicola Bellomo, Sarah De Nigris, Damián Knopoff, Matteo Morini, Pietro Terna. Swarms dynamics approach to behavioral economy: Theoretical tools and price sequences. Networks and Heterogeneous Media, 2020, 15 (3) : 353-368. doi: 10.3934/nhm.2020022
##### References:

show all references

##### References:
1.0, 5.0 ratios: 10/50 buyers (red) and 10/10 sellers (blue), mean price sequences; blue line hides in large part the red one
1.0, 5.0 ratio: 10/50 buyers (red) and 10/10 sellers (blue), zoom on individual price sequences. Y axes do not share the same scale
1.0, 5.0 ratio: 10/50 buyers (red) and 10/10 sellers (blue), standard deviation of mean prices within buyers and within sellers over time
Sellers
 [1] Nicola Bellomo, Abdelghani Bellouquid, Juanjo Nieto, Juan Soler. Modeling chemotaxis from $L^2$--closure moments in kinetic theory of active particles. Discrete and Continuous Dynamical Systems - B, 2013, 18 (4) : 847-863. doi: 10.3934/dcdsb.2013.18.847 [2] Alain Bensoussan, Jens Frehse, Jens Vogelgesang. Systems of Bellman equations to stochastic differential games with non-compact coupling. Discrete and Continuous Dynamical Systems, 2010, 27 (4) : 1375-1389. doi: 10.3934/dcds.2010.27.1375 [3] Mauro Maggioni, James M. Murphy. Learning by active nonlinear diffusion. Foundations of Data Science, 2019, 1 (3) : 271-291. doi: 10.3934/fods.2019012 [4] Leon Petrosyan, David Yeung. Shapley value for differential network games: Theory and application. Journal of Dynamics and Games, 2021, 8 (2) : 151-166. doi: 10.3934/jdg.2020021 [5] Jun Moon. Linear-quadratic mean-field type stackelberg differential games for stochastic jump-diffusion systems. Mathematical Control and Related Fields, 2022, 12 (2) : 371-404. doi: 10.3934/mcrf.2021026 [6] Jingzhen Liu, Ka-Fai Cedric Yiu. Optimal stochastic differential games with VaR constraints. Discrete and Continuous Dynamical Systems - B, 2013, 18 (7) : 1889-1907. doi: 10.3934/dcdsb.2013.18.1889 [7] Alain Bensoussan, Jens Frehse, Christine Grün. Stochastic differential games with a varying number of players. Communications on Pure and Applied Analysis, 2014, 13 (5) : 1719-1736. doi: 10.3934/cpaa.2014.13.1719 [8] Jiequn Han, Ruimeng Hu, Jihao Long. Convergence of deep fictitious play for stochastic differential games. Frontiers of Mathematical Finance, 2022, 1 (2) : 287-319. doi: 10.3934/fmf.2021011 [9] Alan Beggs. Learning in monotone bayesian games. Journal of Dynamics and Games, 2015, 2 (2) : 117-140. doi: 10.3934/jdg.2015.2.117 [10] Sarbaz H. A. Khoshnaw. Reduction of a kinetic model of active export of importins. Conference Publications, 2015, 2015 (special) : 705-722. doi: 10.3934/proc.2015.0705 [11] Beatris Adriana Escobedo-Trujillo, José Daniel López-Barrientos. Nonzero-sum stochastic differential games with additive structure and average payoffs. Journal of Dynamics and Games, 2014, 1 (4) : 555-578. doi: 10.3934/jdg.2014.1.555 [12] Beatris Adriana Escobedo-Trujillo, Alejandro Alaffita-Hernández, Raquiel López-Martínez. Constrained stochastic differential games with additive structure: Average and discount payoffs. Journal of Dynamics and Games, 2018, 5 (2) : 109-141. doi: 10.3934/jdg.2018008 [13] Qingmeng Wei, Zhiyong Yu. Time-inconsistent recursive zero-sum stochastic differential games. Mathematical Control and Related Fields, 2018, 8 (3&4) : 1051-1079. doi: 10.3934/mcrf.2018045 [14] Beatris A. Escobedo-Trujillo. Discount-sensitive equilibria in zero-sum stochastic differential games. Journal of Dynamics and Games, 2016, 3 (1) : 25-50. doi: 10.3934/jdg.2016002 [15] Dohyun Kim, Jeongho Kim. Aggregation and disaggregation of active particles on the unit sphere with time-dependent frequencies. Discrete and Continuous Dynamical Systems - B, 2022, 27 (4) : 2247-2273. doi: 10.3934/dcdsb.2021131 [16] Josep M. Burgués, Joan Mateu. On the analyticity of the trajectories of the particles in the planar patch problem for some active scalar equations. Discrete and Continuous Dynamical Systems, 2022, 42 (6) : 2945-3003. doi: 10.3934/dcds.2022005 [17] Angelo B. Mingarelli. Nonlinear functionals in oscillation theory of matrix differential systems. Communications on Pure and Applied Analysis, 2004, 3 (1) : 75-84. doi: 10.3934/cpaa.2004.3.75 [18] Santiago Capriotti. Dirac constraints in field theory and exterior differential systems. Journal of Geometric Mechanics, 2010, 2 (1) : 1-50. doi: 10.3934/jgm.2010.2.1 [19] Nicola Bellomo, Francesca Colasuonno, Damián Knopoff, Juan Soler. From a systems theory of sociology to modeling the onset and evolution of criminality. Networks and Heterogeneous Media, 2015, 10 (3) : 421-441. doi: 10.3934/nhm.2015.10.421 [20] Daniel Brinkman, Christian Ringhofer. A kinetic games framework for insurance plans. Kinetic and Related Models, 2017, 10 (1) : 93-116. doi: 10.3934/krm.2017004

2021 Impact Factor: 1.41