[1]
|
G. Albi, M. Burger, J. Haskovec, P. Markowich and M. Schlottbom, Continuum modeling of biological network formation, in Active Particles, Springer, 1 (2017), 1-48.
doi: 10.1007/978-3-319-49996-3_1.
|
[2]
|
C. Amitrano, A. Coniglio and F. Di Liberto, Growth probability distribution in kinetic aggregation processes, Phys. Rev. Lett., 57 (1986), 1016.
doi: 10.1103/PhysRevLett.57.1016.
|
[3]
|
D. Balding and D. L. S. McElwain, A mathematical model of tumour-induced capillary growth, J. Theoret. Biol., 114 (1985), 53-73.
doi: 10.1016/S0022-5193(85)80255-1.
|
[4]
|
C. Bardos and E. Tadmor, Stability and spectral convergence of fourier method for nonlinear problems: On the shortcomings of the $2/3$ de-aliasing method, Numer. Math., 129 (2015), 749-782.
doi: 10.1007/s00211-014-0652-y.
|
[5]
|
A. L. Bauer, T. L. Jackson and Y. Jiang, Topography of extracellular matrix mediates vascular morphogenesis and migration speeds in angiogenesis, PLoS Computational Biology, 5 (2009), e1000445, 18pp.
doi: 10.1371/journal.pcbi.1000445.
|
[6]
|
E. Boissard, P. Degond and S. Motsch, Trail formation based on directed pheromone deposition, J. Math. Biol., 66 (2013), 1267-1301.
doi: 10.1007/s00285-012-0529-6.
|
[7]
|
S. C. Brenner and R. L. Scott, The Mathematical Theory of Finite Element Methods, vol. 15, Springer Science & Business Media, 2008.
doi: 10.1007/978-0-387-75934-0.
|
[8]
|
T. Büscher, A. L. Diez, G. Gompper and J. Elgeti, Instability and fingering of interfaces in growing tissue, New J. Phys., 22 (2020), 083005, 11pp.
doi: 10.1088/1367-2630/ab9e88.
|
[9]
|
H. Byrne and M. Chaplain, Mathematical models for tumour angiogenesis: Numerical simulations and nonlinear wave solutions, Bull. Math. Biol., 57 (1995), 461-486.
doi: 10.1007/BF02460635.
|
[10]
|
P. Carmeliet and R. K. Jain, Angiogenesis in cancer and other diseases, Nature, 407 (2000), 249-257.
doi: 10.1038/35025220.
|
[11]
|
A. Chen, J. Darbon, G. Buttazzo, F. Santambrogio and J.-M. Morel, On the equations of landscape formation, Interfaces Free Bound., 16 (2014), 105-136.
doi: 10.4171/IFB/315.
|
[12]
|
A. Chen, J. Darbon and J.-M. Morel, Landscape evolution models: A review of their fundamental equations, Geomorphology, 219 (2014), 68-86.
doi: 10.1016/j.geomorph.2014.04.037.
|
[13]
|
E. Curcio, A. Piscioneri, S. Morelli, S. Salerno, P. Macchiarini and L. De Bartolo, Kinetics of oxygen uptake by cells potentially used in a tissue engineered trachea, Biomaterials, 35 (2014), 6829-6837.
doi: 10.1016/j.biomaterials.2014.04.100.
|
[14]
|
G. Dahlquist and Å. Björck, Numerical Methods in Scientific Computing, Volume i, Society for Industrial and Applied Mathematics, 2008.
doi: 10.1137/1.9780898717785.
|
[15]
|
J. T. Daub and R. M. H. Merks, A cell-based model of extracellular-matrix-guided endothelial cell migration during angiogenesis, Bull. Math. Biol., 75 (2013), 1377-1399.
doi: 10.1007/s11538-013-9826-5.
|
[16]
|
P. Degond and S. Mas-Gallic, The weighted particle method for convection-diffusion equations, i, the case of an isotropic viscosity, Mathematics of computation, 53 (1989), 485-507.
doi: 10.2307/2008716.
|
[17]
|
P. Degond and F.-J. Mustieles, A deterministic approximation of diffusion equations using particles, SIAM J. Sci. Stat. Comput., 11 (1990), 293-310.
doi: 10.1137/0911018.
|
[18]
|
Y. Efendiev and T. Y. Hou, Multiscale finite element methods: Theory and applications, vol. 4, Springer Science & Business Media, 2009.
doi: 10.1007/978-0-387-09496-0.
|
[19]
|
I. Fischer, J.-P. Gagner, M. Law, E. W. Newcomb and D. Zagzag, Angiogenesis in gliomas: Biology and molecular pathophysiology, Brain pathology, 15 (2005), 297-310.
doi: 10.1111/j.1750-3639.2005.tb00115.x.
|
[20]
|
J. Folkman, Angiogenesis in cancer, vascular, rheumatoid and other disease, Nature Medicine, 1 (1995), 27-30.
doi: 10.1038/nm0195-27.
|
[21]
|
R. L. Fournier, Basic Transport Phenomena in Biomedical Engineering, CRC press, 2017.
doi: 10.1201/9781315120478.
|
[22]
|
P. A. Galie, D.-H. T. Nguyen, C. K. Choi, D. M. Cohen, P. A. Janmey and C. S. Chen, Fluid shear stress threshold regulates angiogenic sprouting, Proc. Natl. Acad. Sci. USA, 111 (2014), 7968-7973.
doi: 10.1073/pnas.1310842111.
|
[23]
|
B. Garipcan, S. Maenz, T. Pham, U. Settmacher, K. D. Jandt, J. Zanow and J. Bossert, Image analysis of endothelial microstructure and endothelial cell dimensions of human arteries-a preliminary study, Advanced Engineering Materials, 13 (2011), B54-B57.
doi: 10.1002/adem.201080076.
|
[24]
|
M. A. Gimbrone Jr, R. S. Cotran, S. B. Leapman and J. Folkman, Tumor growth and neovascularization: An experimental model using the rabbit cornea, Journal of the National Cancer Institute, 52 (1974), 413-427.
doi: 10.1093/jnci/52.2.413.
|
[25]
|
M. S. Gockenbach, Understanding and Implementing The Finite Element Method, Vol. 97, SIAM, 2006.
doi: 10.1137/1.9780898717846.
|
[26]
|
D. Goldman and A. S. Popel, A computational study of the effect of capillary network anastomoses and tortuosity on oxygen transport, J. Theoret. Biol., 206 (2000), 181-194.
doi: 10.1006/jtbi.2000.2113.
|
[27]
|
J. A. González, F. J. Rodríguez-Cortés, O. Cronie and J. Mateu, Spatio-temporal point process statistics: A review, Spat. Stat., 18 (2016), 505-544.
doi: 10.1016/j.spasta.2016.10.002.
|
[28]
|
J. A. Grogan, A. J. Connor, J. M. Pitt-Francis, P. K. Maini and H. M. Byrne, The importance of geometry in the corneal micropocket angiogenesis assay, PLoS Computational Biology, 14 (2018), e1006049.
doi: 10.1371/journal.pcbi.1006049.
|
[29]
|
J. Haskovec, L. M. Kreusser and P. Markowich, Rigorous continuum limit for the discrete network formation problem, Comm. Partial Differential Equations, 44 (2019), 1159-1185.
doi: 10.1080/03605302.2019.1612909.
|
[30]
|
J. Haskovec, P. Markowich and B. Perthame, Mathematical analysis of a pde system for biological network formation, Comm. Partial Differential Equations, 40 (2015), 918-956.
doi: 10.1080/03605302.2014.968792.
|
[31]
|
J. Haskovec, P. Markowich, B. Perthame and M. Schlottbom, Notes on a pde system for biological network formation, Nonlinear Anal., 138 (2016), 127-155.
doi: 10.1016/j.na.2015.12.018.
|
[32]
|
M. B. Hastings and L. S. Levitov, Laplacian growth as one-dimensional turbulence, Phys. D, 116 (1998), 244-252.
doi: 10.1016/S0167-2789(97)00244-3.
|
[33]
|
H. J. Herrmann, Geometrical cluster growth models and kinetic gelation, Physics Reports, 136 (1986), 153-224.
doi: 10.1016/0370-1573(86)90047-5.
|
[34]
|
T. Hillen, M 5 mesoscopic and macroscopic models for mesenchymal motion, J. Math. Biol., 53 (2006), 585-616.
doi: 10.1007/s00285-006-0017-y.
|
[35]
|
D. Hu and D. Cai, Adaptation and optimization of biological transport networks, Phys. Rev. Lett., 111 (2013), 138701.
doi: 10.1103/PhysRevLett.111.138701.
|
[36]
|
S. Ichioka, M. Shibata, K. Kosaki, Y. Sato, K. Harii and A. Kamiya, Effects of shear stress on wound-healing angiogenesis in the rabbit ear chamber, Journal of Surgical Research, 72 (1997), 29-35.
doi: 10.1006/jsre.1997.5170.
|
[37]
|
H. Kang, K. J. Bayless and R. Kaunas, Fluid shear stress modulates endothelial cell invasion into three-dimensional collagen matrices, American Journal of Physiology-Heart and Circulatory Physiology, 295 (2008), H2087-H2097.
doi: 10.1152/ajpheart.00281.2008.
|
[38]
|
R. Kaunas, H. Kang and K. J. Bayless, Synergistic regulation of angiogenic sprouting by biochemical factors and wall shear stress, Cellular And Molecular Bioengineering, 4 (2011), 547-559.
doi: 10.1007/s12195-011-0208-5.
|
[39]
|
B. Kaur, F. W. Khwaja, E. A. Severson, S. L. Matheny, D. J. Brat and E. G. Van Meir, Hypoxia and the hypoxia-inducible-factor pathway in glioma growth and angiogenesis, Neuro-Oncology, 7 (2005), 134-153.
doi: 10.1215/S1152851704001115.
|
[40]
|
A. B. Langdon, B. I. Cohen and A. Friedman, Direct implicit large time-step particle simulation of plasmas, J. Comput. Phys., 51 (1983), 107-138.
doi: 10.1016/0021-9991(83)90083-9.
|
[41]
|
P. Macklin, S. McDougall, A. R. Anderson, M. A. Chaplain, V. Cristini and J. Lowengrub, Multiscale modelling and nonlinear simulation of vascular tumour growth, Journal of Mathematical Biology, 58 (2009), 765-798.
doi: 10.1007/s00285-008-0216-9.
|
[42]
|
S. Mas-Gallic, Particle approximation of a linear convection-diffusion problem with neumann boundary conditions, SIAM Journal on Numerical Analysis, 32 (1995), 1098-1125.
doi: 10.1137/0732050.
|
[43]
|
M. Matsumoto and T. Nishimura, Mersenne twister: A 623-dimensionally equidistributed uniform pseudo-random number generator, ACM Transactions on Modeling and Computer Simulation (TOMACS), 8 (1998), 3-30.
doi: 10.1145/272991.272995.
|
[44]
|
S. R. McDougall, A. R. Anderson and M. A. Chaplain, Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: Clinical implications and therapeutic targeting strategies, J. Theoret. Biol., 241 (2006), 564-589.
doi: 10.1016/j.jtbi.2005.12.022.
|
[45]
|
G. Mitchison, A model for vein formation in higher plants, Proc. R. Soc. Lond. B, 207 (1980), 79-109.
doi: 10.1098/rspb.1980.0015.
|
[46]
|
G. J. Mitchison, D. E. Hanke and A. R. Sheldrake, The polar transport of auxin and vein patterns in plants, Phil. Trans. R. Soc. Lond. B, 295 (1981), 461-471.
doi: 10.1098/rstb.1981.0154.
|
[47]
|
J. J. Monaghan, Smoothed particle hydrodynamics, Annual Review of Astronomy and Astrophysics, 30 (1992), 543-574.
doi: 10.1007/978-94-011-4780-4_110.
|
[48]
|
M. Müller, D. Charypar and M. Gross, Particle-based fluid simulation for interactive applications, in Proceedings of The 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Eurographics Association, (2003), 154-159.
|
[49]
|
W. L. Murfee, Implications of fluid shear stress in capillary sprouting during adult microvascular network remodeling, Mechanobiology of the Endothelium, (2015), 166.
|
[50]
|
C. D. Murray, The physiological principle of minimum work: I. the vascular system and the cost of blood volume, Proc. Natl. Acad. Sci. USA, 12 (1926), 207-214.
doi: 10.1073/pnas.12.3.207.
|
[51]
|
V. Muthukkaruppan, L. Kubai and R. Auerbach, Tumor-induced neovascularization in the mouse eye, Journal of the National Cancer Institute, 69 (1982), 699-708.
|
[52]
|
F. Otto, Viscous fingering: An optimal bound on the growth rate of the mixing zone, SIAM Journal on Applied Mathematics, 57 (1997), 982-990.
doi: 10.1137/S003613999529438X.
|
[53]
|
M. R. Owen, T. Alarcón, P. K. Maini and H. M. Byrne, Angiogenesis and vascular remodelling in normal and cancerous tissues, J. Math. Biol., 58 (2009), 689-721.
doi: 10.1007/s00285-008-0213-z.
|
[54]
|
K. J. Painter, Modelling cell migration strategies in the extracellular matrix, J. Math. Biol., 58 (2009), 511-543.
doi: 10.1007/s00285-008-0217-8.
|
[55]
|
S. Paku and N. Paweletz, First steps of tumor-related angiogenesis, laboratory investigation, A Journal of Technical Methods and Pathology, 65 (1991), 334-346.
|
[56]
|
J. Y. Park, J. B. White, N. Walker, C.-H. Kuo, W. Cha, M. E. Meyerhoff and S. Takayama, Responses of endothelial cells to extremely slow flows, Biomicrofluidics, 5 (2011), 022211.
doi: 10.1063/1.3576932.
|
[57]
|
N. Paweletz and M. Knierim, Tumor-related angiogenesis, Critical Reviews in Oncology Hematology, 9 (1989), 197-242.
doi: 10.1016/S1040-8428(89)80002-2.
|
[58]
|
R. Penta, D. Ambrosi and A. Quarteroni, Multiscale homogenization for fluid and drug transport in vascularized malignant tissues, Math. Models Methods Appl. Sci., 25 (2015), 79-108.
doi: 10.1142/S0218202515500037.
|
[59]
|
H. Perfahl, H. M. Byrne, T. Chen, V. Estrella, T. Alarcón, A. Lapin, R. A. Gatenby, R. J. Gillies, M. C. Lloyd, P. K. Maini, et al., Multiscale modelling of vascular tumour growth in 3d: The roles of domain size and boundary conditions, PloS One, 6 (2011), e14790.
doi: 10.1371/journal.pone.0014790.
|
[60]
|
D. Peurichard, F. Delebecque, A. Lorsignol, C. Barreau, J. Rouquette, X. Descombes, L. Casteilla and P. Degond, Simple mechanical cues could explain adipose tissue morphology, J. Theoret. Biol., 429 (2017), 61-81.
doi: 10.1016/j.jtbi.2017.06.030.
|
[61]
|
L.-K. Phng and H. Gerhardt, Angiogenesis: A team effort coordinated by notch, Developmental cell, 16 (2009), 196-208.
doi: 10.1016/j.devcel.2009.01.015.
|
[62]
|
L. Pietronero and H. Wiesmann, Stochastic model for dielectric breakdown, J. Stat. Phys., 36 (1984), 909-916.
doi: 10.1007/BF01012949.
|
[63]
|
S. Pillay, H. M. Byrne and P. K. Maini, Modeling angiogenesis: A discrete to continuum description, Phys. Rev. E, 95 (2017), 012410, 12pp.
doi: 10.1103/physreve.95.012410.
|
[64]
|
A. Pries, T. Secomb and P. Gaehtgens, Structural adaptation and stability of microvascular networks: Theory and simulations, American Journal of Physiology-Heart and Circulatory Physiology, 275 (1998), H349-H360.
doi: 10.1152/ajpheart.1998.275.2.H349.
|
[65]
|
A. Pries, T. W. Secomb, T. Gessner, M. Sperandio, J. Gross and P. Gaehtgens, Resistance to blood flow in microvessels in vivo, Circulation Research, 75 (1994), 904-915.
doi: 10.1161/01.RES.75.5.904.
|
[66]
|
P.-A. Raviart, An analysis of particle methods, in Numerical Methods in Fluid Dynamics, Springer, 1127 (1985), 243-324.
doi: 10.1007/BFb0074532.
|
[67]
|
W. Risau, Mechanisms of angiogenesis, Nature, 386 (1997), 671-674.
doi: 10.1038/386671a0.
|
[68]
|
A.-G. Rolland-Lagan and P. Prusinkiewicz, Reviewing models of auxin canalization in the context of leaf vein pattern formation in arabidopsis, The Plant Journal, 44 (2005), 854-865.
|
[69]
|
P. G. Saffman and G. I. Taylor, The penetration of a fluid into a porous medium or hele-shaw cell containing a more viscous liquid, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 245 (1958), 312-329.
doi: 10.1098/rspa.1958.0085.
|
[70]
|
M. Schneider, J. Reichold, B. Weber, G. Székely and S. Hirsch, Tissue metabolism driven arterial tree generation, Medical Image Analysis, 16 (2012), 1397-1414.
doi: 10.1016/j.media.2012.04.009.
|
[71]
|
M. Scianna, C. G. Bell and L. Preziosi, A review of mathematical models for the formation of vascular networks, J. Theoret. Biol., 333 (2013), 174-209.
doi: 10.1016/j.jtbi.2013.04.037.
|
[72]
|
T. W. Secomb, J. P. Alberding, R. Hsu, M. W. Dewhirst and A. R. Pries, Angiogenesis: An adaptive dynamic biological patterning problem, PLoS Computational Biology, 9 (2013), e1002983, 12pp.
doi: 10.1371/journal.pcbi.1002983.
|
[73]
|
T. C. Skalak and R. J. Price, The role of mechanical stresses in microvascular remodeling, Microcirculation, 3 (1996), 143-165.
doi: 10.3109/10739689609148284.
|
[74]
|
M. A. Swartz and M. E. Fleury, Interstitial flow and its effects in soft tissues, Annu. Rev. Biomed. Eng., 9 (2007), 229-256.
doi: 10.1146/annurev.bioeng.9.060906.151850.
|
[75]
|
G. Takahashi, I. Fatt and T. Goldstick, Oxygen consumption rate of tissue measured by a micropolarographic method, The Journal of general physiology, 50 (1966), 317-335.
doi: 10.1085/jgp.50.2.317.
|
[76]
|
L. Tang, A. L. van de Ven, D. Guo, V. Andasari, V. Cristini, K. C. Li and X. Zhou, Computational modeling of 3d tumor growth and angiogenesis for chemotherapy evaluation, PloS One, 9 (2014), e83962.
doi: 10.1371/journal.pone.0083962.
|
[77]
|
R. D. Travasso, E. C. Poiré, M. Castro, J. C. Rodrguez-Manzaneque, and A. Hernández-Machado, Tumor angiogenesis and vascular patterning: A mathematical model, PloS One, 6 (2011), e19989.
doi: 10.1371/journal.pone.0019989.
|
[78]
|
J. P. Vila, On particle weighted methods and smooth particle hydrodynamics, Mathematical Models and Methods in Applied Sciences, 9 (1999), 161-209.
doi: 10.1142/S0218202599000117.
|
[79]
|
M. Welter, K. Bartha and H. Rieger, Emergent vascular network inhomogeneities and resulting blood flow patterns in a growing tumor, Journal of Theoretical Biology, 250 (2008), 257-280.
doi: 10.1016/j.jtbi.2007.09.031.
|
[80]
|
M. Welter, K. Bartha and H. Rieger, Vascular remodelling of an arterio-venous blood vessel network during solid tumour growth, Journal of Theoretical Biology, 259 (2009), 405-422.
doi: 10.1016/j.jtbi.2009.04.005.
|
[81]
|
S. A. Williams, S. Wasserman, D. W. Rawlinson, R. I. Kitney, L. H. Smaje and J. E. Tooke, Dynamic measurement of human capillary blood pressure, Clinical Science, 74 (1988), 507-512.
doi: 10.1042/cs0740507.
|
[82]
|
J. Wu, S. Xu, Q. Long, M. W. Collins, C. S. König, G. Zhao, Y. Jiang and A. R. Padhani, Coupled modeling of blood perfusion in intravascular, interstitial spaces in tumor microvasculature, Journal of Biomechanics, 41 (2008), 996-1004.
doi: 10.1016/j.jbiomech.2007.12.008.
|
[83]
|
Y. Xiong, P. Yang, R. L. Proia and T. Hla, Erythrocyte-derived sphingosine 1-phosphate is essential for vascular development, The Journal of Clinical Investigation, 124 (2014), 4823-4828.
doi: 10.1172/JCI77685.
|