-
Previous Article
Emergence of synchronization in Kuramoto model with frustration under general network topology
- NHM Home
- This Issue
-
Next Article
Nonlocal reaction traffic flow model with on-off ramps
Stochastic two-scale convergence and Young measures
1. | Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39, 10117 Berlin, Germany |
2. | Zentrum Mathematik, Technische Universität München, Boltzmannstr. 3, 85747 Garching bei München, Germany |
3. | Fakultät Mathematik, Technische Universität Dresden, 01062 Dresden, Germany |
In this paper we compare the notion of stochastic two-scale convergence in the mean (by Bourgeat, Mikelić and Wright), the notion of stochastic unfolding (recently introduced by the authors), and the quenched notion of stochastic two-scale convergence (by Zhikov and Pyatnitskii). In particular, we introduce stochastic two-scale Young measures as a tool to compare mean and quenched limits. Moreover, we discuss two examples, which can be naturally analyzed via stochastic unfolding, but which cannot be treated via quenched stochastic two-scale convergence.
References:
[1] |
G. Allaire,
Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), 1482-1518.
doi: 10.1137/0523084. |
[2] |
K. T. Andrews and S. Wright,
Stochastic homogenization of elliptic boundary-value problems with $L^p$-data, Asymptot. Anal., 17 (1998), 165-184.
|
[3] |
T. Arbogast, J. Douglas, Jr and U. Hornung,
Derivation of the double porosity model of single phase flow via homogenization theory, SIAM J. Math. Anal., 21 (1990), 823-836.
doi: 10.1137/0521046. |
[4] |
E. J. Balder,
A general approach to lower semicontinuity and lower closure in optimal control theory, SIAM J. Control Optim., 22 (1984), 570-598.
doi: 10.1137/0322035. |
[5] |
A. Bourgeat, S. Luckhaus and A. Mikelić, A rigorous result for a double porosity model of immiscible two-phase flow, Comptes Rendusa l'Académie des Sciences, 320 (1994), 1289–1294. |
[6] |
A. Bourgeat, A. Mikelić and S. Wright,
Stochastic two-scale convergence in the mean and applications, J. Reine Angew. Math., 456 (1994), 19-51.
|
[7] |
D. Cioranescu, A. Damlamian and R. De Arcangelis,
Homogenization of nonlinear integrals via the periodic unfolding method, C. R. Math., 339 (2004), 77-82.
doi: 10.1016/j.crma.2004.03.028. |
[8] |
D. Cioranescu, A. Damlamian, P. Donato, G. Griso and R. Zaki,
The periodic unfolding method in domains with holes, SIAM J. Math. Anal., 44 (2012), 718-760.
doi: 10.1137/100817942. |
[9] |
D. Cioranescu, A. Damlamian and G. Griso,
Periodic unfolding and homogenization, C. R. Math., 335 (2002), 99-104.
doi: 10.1016/S1631-073X(02)02429-9. |
[10] |
D. Cioranescu, A. Damlamian and G. Griso,
The periodic unfolding method in homogenization, SIAM J. Math. Anal., 40 (2008), 1585-1620.
doi: 10.1137/080713148. |
[11] |
G. Dal Maso and L. Modica,
Nonlinear stochastic homogenization., Ann. Mat. Pura Appl., 144 (1986), 347-389.
doi: 10.1007/BF01760826. |
[12] |
D. Daley and D. Vere-Jones, An Introduction to the Theory of Point Processes, Springer Series in Statistics. Springer-Verlag, New York, 1988. |
[13] |
J. Fischer and S. Neukamm,
Optimal homogenization rates in stochastic homogenization of nonlinear uniformly elliptic equations and systems, Arch. Ration. Mech. Anal., 242 (2021), 343-452.
doi: 10.1007/s00205-021-01686-9. |
[14] |
G. Griso,
Error estimate and unfolding for periodic homogenization, Asymptot. Anal., 40 (2004), 269-286.
|
[15] |
H. Hanke,
Homogenization in gradient plasticity, Math. Models Methods Appl. Sci., 21 (2011), 1651-1684.
doi: 10.1142/S0218202511005520. |
[16] |
M. Heida,
An extension of the stochastic two-scale convergence method and application, Asymptot. Anal., 72 (2011), 1-30.
doi: 10.3233/ASY-2010-1022. |
[17] |
M. Heida,
Stochastic homogenization of rate-independent systems and applications, Contin. Mech. Thermodyn., 29 (2017), 853-894.
doi: 10.1007/s00161-017-0564-z. |
[18] |
M. Heida and S. Nesenenko,
Stochastic homogenization of rate-dependent models of monotone type in plasticity, Asymptot. Anal., 112 (2019), 185-212.
doi: 10.3233/ASY-181502. |
[19] |
M. Heida, S. Neukamm and M. Varga,
Stochastic homogenization of $\Lambda$-convex gradient flows, Discrete Contin. Dyn. Syst. Ser. S, 14 (2021), 427-453.
doi: 10.3934/dcdss.2020328. |
[20] |
H. Hoppe, Homogenization of Rapidly Oscillating Riemannian Manifolds, Dissertation, TU Dresden, 2020, https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-743766. |
[21] |
H. Hoppe, S. Neukamm and M. Schäffner, Stochastic homogenization of non-convex integral functionals with degenerate growth, (in preparation), 2021. |
[22] |
V. V. Jikov, S. M. Kozlov and O. A. Oleinik, Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, Berlin, 1994.
doi: 10.1007/978-3-642-84659-5. |
[23] |
S. M. Kozlov,
Averaging of random operators, Mat. Sb., 109 (1979), 188-202.
|
[24] |
M. Liero and S. Reichelt, Homogenization of Cahn–Hilliard-type equations via evolutionary $\Gamma$-convergence, NoDEA Nonlinear Differential Equations Appl., 25 (2018), Paper No. 6, 31 pp.
doi: 10.1007/s00030-018-0495-9. |
[25] |
D. Lukkassen, G. Nguetseng and P. Wall,
Two-scale convergence, Int. J. Pure Appl. Math., 2 (2002), 35-86.
|
[26] |
A. Mielke, S. Reichelt and M. Thomas,
Two-scale homogenization of nonlinear reaction-diffusion systems with slow diffusion, Netw. Heterog. Media, 9 (2014), 353-382.
doi: 10.3934/nhm.2014.9.353. |
[27] |
A. Mielke and A. M. Timofte,
Two-scale homogenization for evolutionary variational inequalities via the energetic formulation, SIAM J. Math. Anal., 39 (2007), 642-668.
doi: 10.1137/060672790. |
[28] |
S. Neukamm, Homogenization, linearization and dimension reduction in elasticity with variational methods, Technische Universität München, 2010. |
[29] |
S. Neukamm, M. Schäffner and A. Schlömerkemper,
Stochastic homogenization of nonconvex discrete energies with degenerate growth, SIAM J. Math. Anal., 49 (2017), 1761-1809.
doi: 10.1137/16M1097705. |
[30] |
S. Neukamm and M. Varga,
Stochastic unfolding and homogenization of spring network models, Multiscale Model. Simul., 16 (2018), 857-899.
doi: 10.1137/17M1141230. |
[31] |
S. Neukamm, M. Varga and M. Waurick,
Two-scale homogenization of abstract linear time-dependent PDEs, Asymptot. Anal., 125 (2021), 247-287.
|
[32] |
G. Nguetseng,
A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal., 20 (1989), 608-623.
doi: 10.1137/0520043. |
[33] |
G. C. Papanicolaou and S. S. Varadhan,
Boundary value problems with rapidly oscillating random coefficients, Random Fields, 1 (1979), 835-873.
|
[34] |
M. Varga, Stochastic Unfolding and Homogenization of Evolutionary Gradient Systems, Dissertation, TU Dresden, 2019, https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-349342. |
[35] |
A. Visintin,
Towards a two-scale calculus, ESAIM Control Optim. Calc. Var., 12 (2006), 371-397.
doi: 10.1051/cocv:2006012. |
[36] |
C. Vogt, A homogenization theorem leading to a Volterra-integrodifferential equation for permeation chromotography, Preprint No 155, SFB 123, Heidelberg, 1982. |
[37] |
V. V. Zhikov,
On an extension of the method of two-scale convergence and its applications, Sb. Math., 191 (2000), 973-1014.
doi: 10.1070/SM2000v191n07ABEH000491. |
[38] |
V. V. Zhikov and A. Pyatnitskii,
Homogenization of random singular structures and random measures, Izv. Math., 70 (2006), 19-67.
doi: 10.1070/IM2006v070n01ABEH002302. |
show all references
References:
[1] |
G. Allaire,
Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), 1482-1518.
doi: 10.1137/0523084. |
[2] |
K. T. Andrews and S. Wright,
Stochastic homogenization of elliptic boundary-value problems with $L^p$-data, Asymptot. Anal., 17 (1998), 165-184.
|
[3] |
T. Arbogast, J. Douglas, Jr and U. Hornung,
Derivation of the double porosity model of single phase flow via homogenization theory, SIAM J. Math. Anal., 21 (1990), 823-836.
doi: 10.1137/0521046. |
[4] |
E. J. Balder,
A general approach to lower semicontinuity and lower closure in optimal control theory, SIAM J. Control Optim., 22 (1984), 570-598.
doi: 10.1137/0322035. |
[5] |
A. Bourgeat, S. Luckhaus and A. Mikelić, A rigorous result for a double porosity model of immiscible two-phase flow, Comptes Rendusa l'Académie des Sciences, 320 (1994), 1289–1294. |
[6] |
A. Bourgeat, A. Mikelić and S. Wright,
Stochastic two-scale convergence in the mean and applications, J. Reine Angew. Math., 456 (1994), 19-51.
|
[7] |
D. Cioranescu, A. Damlamian and R. De Arcangelis,
Homogenization of nonlinear integrals via the periodic unfolding method, C. R. Math., 339 (2004), 77-82.
doi: 10.1016/j.crma.2004.03.028. |
[8] |
D. Cioranescu, A. Damlamian, P. Donato, G. Griso and R. Zaki,
The periodic unfolding method in domains with holes, SIAM J. Math. Anal., 44 (2012), 718-760.
doi: 10.1137/100817942. |
[9] |
D. Cioranescu, A. Damlamian and G. Griso,
Periodic unfolding and homogenization, C. R. Math., 335 (2002), 99-104.
doi: 10.1016/S1631-073X(02)02429-9. |
[10] |
D. Cioranescu, A. Damlamian and G. Griso,
The periodic unfolding method in homogenization, SIAM J. Math. Anal., 40 (2008), 1585-1620.
doi: 10.1137/080713148. |
[11] |
G. Dal Maso and L. Modica,
Nonlinear stochastic homogenization., Ann. Mat. Pura Appl., 144 (1986), 347-389.
doi: 10.1007/BF01760826. |
[12] |
D. Daley and D. Vere-Jones, An Introduction to the Theory of Point Processes, Springer Series in Statistics. Springer-Verlag, New York, 1988. |
[13] |
J. Fischer and S. Neukamm,
Optimal homogenization rates in stochastic homogenization of nonlinear uniformly elliptic equations and systems, Arch. Ration. Mech. Anal., 242 (2021), 343-452.
doi: 10.1007/s00205-021-01686-9. |
[14] |
G. Griso,
Error estimate and unfolding for periodic homogenization, Asymptot. Anal., 40 (2004), 269-286.
|
[15] |
H. Hanke,
Homogenization in gradient plasticity, Math. Models Methods Appl. Sci., 21 (2011), 1651-1684.
doi: 10.1142/S0218202511005520. |
[16] |
M. Heida,
An extension of the stochastic two-scale convergence method and application, Asymptot. Anal., 72 (2011), 1-30.
doi: 10.3233/ASY-2010-1022. |
[17] |
M. Heida,
Stochastic homogenization of rate-independent systems and applications, Contin. Mech. Thermodyn., 29 (2017), 853-894.
doi: 10.1007/s00161-017-0564-z. |
[18] |
M. Heida and S. Nesenenko,
Stochastic homogenization of rate-dependent models of monotone type in plasticity, Asymptot. Anal., 112 (2019), 185-212.
doi: 10.3233/ASY-181502. |
[19] |
M. Heida, S. Neukamm and M. Varga,
Stochastic homogenization of $\Lambda$-convex gradient flows, Discrete Contin. Dyn. Syst. Ser. S, 14 (2021), 427-453.
doi: 10.3934/dcdss.2020328. |
[20] |
H. Hoppe, Homogenization of Rapidly Oscillating Riemannian Manifolds, Dissertation, TU Dresden, 2020, https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-743766. |
[21] |
H. Hoppe, S. Neukamm and M. Schäffner, Stochastic homogenization of non-convex integral functionals with degenerate growth, (in preparation), 2021. |
[22] |
V. V. Jikov, S. M. Kozlov and O. A. Oleinik, Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, Berlin, 1994.
doi: 10.1007/978-3-642-84659-5. |
[23] |
S. M. Kozlov,
Averaging of random operators, Mat. Sb., 109 (1979), 188-202.
|
[24] |
M. Liero and S. Reichelt, Homogenization of Cahn–Hilliard-type equations via evolutionary $\Gamma$-convergence, NoDEA Nonlinear Differential Equations Appl., 25 (2018), Paper No. 6, 31 pp.
doi: 10.1007/s00030-018-0495-9. |
[25] |
D. Lukkassen, G. Nguetseng and P. Wall,
Two-scale convergence, Int. J. Pure Appl. Math., 2 (2002), 35-86.
|
[26] |
A. Mielke, S. Reichelt and M. Thomas,
Two-scale homogenization of nonlinear reaction-diffusion systems with slow diffusion, Netw. Heterog. Media, 9 (2014), 353-382.
doi: 10.3934/nhm.2014.9.353. |
[27] |
A. Mielke and A. M. Timofte,
Two-scale homogenization for evolutionary variational inequalities via the energetic formulation, SIAM J. Math. Anal., 39 (2007), 642-668.
doi: 10.1137/060672790. |
[28] |
S. Neukamm, Homogenization, linearization and dimension reduction in elasticity with variational methods, Technische Universität München, 2010. |
[29] |
S. Neukamm, M. Schäffner and A. Schlömerkemper,
Stochastic homogenization of nonconvex discrete energies with degenerate growth, SIAM J. Math. Anal., 49 (2017), 1761-1809.
doi: 10.1137/16M1097705. |
[30] |
S. Neukamm and M. Varga,
Stochastic unfolding and homogenization of spring network models, Multiscale Model. Simul., 16 (2018), 857-899.
doi: 10.1137/17M1141230. |
[31] |
S. Neukamm, M. Varga and M. Waurick,
Two-scale homogenization of abstract linear time-dependent PDEs, Asymptot. Anal., 125 (2021), 247-287.
|
[32] |
G. Nguetseng,
A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal., 20 (1989), 608-623.
doi: 10.1137/0520043. |
[33] |
G. C. Papanicolaou and S. S. Varadhan,
Boundary value problems with rapidly oscillating random coefficients, Random Fields, 1 (1979), 835-873.
|
[34] |
M. Varga, Stochastic Unfolding and Homogenization of Evolutionary Gradient Systems, Dissertation, TU Dresden, 2019, https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-349342. |
[35] |
A. Visintin,
Towards a two-scale calculus, ESAIM Control Optim. Calc. Var., 12 (2006), 371-397.
doi: 10.1051/cocv:2006012. |
[36] |
C. Vogt, A homogenization theorem leading to a Volterra-integrodifferential equation for permeation chromotography, Preprint No 155, SFB 123, Heidelberg, 1982. |
[37] |
V. V. Zhikov,
On an extension of the method of two-scale convergence and its applications, Sb. Math., 191 (2000), 973-1014.
doi: 10.1070/SM2000v191n07ABEH000491. |
[38] |
V. V. Zhikov and A. Pyatnitskii,
Homogenization of random singular structures and random measures, Izv. Math., 70 (2006), 19-67.
doi: 10.1070/IM2006v070n01ABEH002302. |
[1] |
Robert E. Miller. Homogenization of time-dependent systems with Kelvin-Voigt damping by two-scale convergence. Discrete and Continuous Dynamical Systems, 1995, 1 (4) : 485-502. doi: 10.3934/dcds.1995.1.485 |
[2] |
Aurore Back, Emmanuel Frénod. Geometric two-scale convergence on manifold and applications to the Vlasov equation. Discrete and Continuous Dynamical Systems - S, 2015, 8 (1) : 223-241. doi: 10.3934/dcdss.2015.8.223 |
[3] |
Alexander Mielke, Sina Reichelt, Marita Thomas. Two-scale homogenization of nonlinear reaction-diffusion systems with slow diffusion. Networks and Heterogeneous Media, 2014, 9 (2) : 353-382. doi: 10.3934/nhm.2014.9.353 |
[4] |
Erik Kropat, Silja Meyer-Nieberg, Gerhard-Wilhelm Weber. Bridging the gap between variational homogenization results and two-scale asymptotic averaging techniques on periodic network structures. Numerical Algebra, Control and Optimization, 2017, 7 (3) : 223-250. doi: 10.3934/naco.2017016 |
[5] |
Fang Liu, Aihui Zhou. Localizations and parallelizations for two-scale finite element discretizations. Communications on Pure and Applied Analysis, 2007, 6 (3) : 757-773. doi: 10.3934/cpaa.2007.6.757 |
[6] |
Alexandre Mouton. Expansion of a singularly perturbed equation with a two-scale converging convection term. Discrete and Continuous Dynamical Systems - S, 2016, 9 (5) : 1447-1473. doi: 10.3934/dcdss.2016058 |
[7] |
Ibrahima Faye, Emmanuel Frénod, Diaraf Seck. Two-Scale numerical simulation of sand transport problems. Discrete and Continuous Dynamical Systems - S, 2015, 8 (1) : 151-168. doi: 10.3934/dcdss.2015.8.151 |
[8] |
Jean Louis Woukeng. $\sum $-convergence and reiterated homogenization of nonlinear parabolic operators. Communications on Pure and Applied Analysis, 2010, 9 (6) : 1753-1789. doi: 10.3934/cpaa.2010.9.1753 |
[9] |
Jie Zhao. Convergence rates for elliptic reiterated homogenization problems. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2787-2795. doi: 10.3934/cpaa.2013.12.2787 |
[10] |
Andriy Bondarenko, Guy Bouchitté, Luísa Mascarenhas, Rajesh Mahadevan. Rate of convergence for correctors in almost periodic homogenization. Discrete and Continuous Dynamical Systems, 2005, 13 (2) : 503-514. doi: 10.3934/dcds.2005.13.503 |
[11] |
Jingwei Hu, Shi Jin, Li Wang. An asymptotic-preserving scheme for the semiconductor Boltzmann equation with two-scale collisions: A splitting approach. Kinetic and Related Models, 2015, 8 (4) : 707-723. doi: 10.3934/krm.2015.8.707 |
[12] |
Alexandre Mouton. Two-scale semi-Lagrangian simulation of a charged particle beam in a periodic focusing channel. Kinetic and Related Models, 2009, 2 (2) : 251-274. doi: 10.3934/krm.2009.2.251 |
[13] |
Xu Yang, François Golse, Zhongyi Huang, Shi Jin. Numerical study of a domain decomposition method for a two-scale linear transport equation. Networks and Heterogeneous Media, 2006, 1 (1) : 143-166. doi: 10.3934/nhm.2006.1.143 |
[14] |
Shi Jin, Xu Yang, Guangwei Yuan. A domain decomposition method for a two-scale transport equation with energy flux conserved at the interface. Kinetic and Related Models, 2008, 1 (1) : 65-84. doi: 10.3934/krm.2008.1.65 |
[15] |
Alexander Mielke. Weak-convergence methods for Hamiltonian multiscale problems. Discrete and Continuous Dynamical Systems, 2008, 20 (1) : 53-79. doi: 10.3934/dcds.2008.20.53 |
[16] |
Junhao Hu, Chenggui Yuan. Strong convergence of neutral stochastic functional differential equations with two time-scales. Discrete and Continuous Dynamical Systems - B, 2019, 24 (11) : 5831-5848. doi: 10.3934/dcdsb.2019108 |
[17] |
Theodore Tachim Medjo. On the convergence of a stochastic 3D globally modified two-phase flow model. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 395-430. doi: 10.3934/dcds.2019016 |
[18] |
Weisheng Niu, Yao Xu. Convergence rates in homogenization of higher-order parabolic systems. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 4203-4229. doi: 10.3934/dcds.2018183 |
[19] |
Fabio Camilli, Claudio Marchi. On the convergence rate in multiscale homogenization of fully nonlinear elliptic problems. Networks and Heterogeneous Media, 2011, 6 (1) : 61-75. doi: 10.3934/nhm.2011.6.61 |
[20] |
Patrick Henning. Convergence of MsFEM approximations for elliptic, non-periodic homogenization problems. Networks and Heterogeneous Media, 2012, 7 (3) : 503-524. doi: 10.3934/nhm.2012.7.503 |
2021 Impact Factor: 1.41
Tools
Metrics
Other articles
by authors
[Back to Top]