• Previous Article
    Splitting scheme for a macroscopic crowd motion model with congestion for a two-typed population
  • NHM Home
  • This Issue
  • Next Article
    On the local and global existence of the Hall equations with fractional Laplacian and related equations
doi: 10.3934/nhm.2022014
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

A periodic homogenization problem with defects rare at infinity

École des Ponts ParisTech and INRIA Paris, 6 & 8, avenue Blaise Pascal, 77455 Marne-La-Vallée Cedex 2, France

Received  September 2021 Revised  February 2022 Early access March 2022

We consider a homogenization problem for the diffusion equation $ -\operatorname{div}\left(a_{\varepsilon} \nabla u_{\varepsilon} \right) = f $ when the coefficient $ a_{\varepsilon} $ is a non-local perturbation of a periodic coefficient. The perturbation does not vanish but becomes rare at infinity in a sense made precise in the text. We prove the existence of a corrector, identify the homogenized limit and study the convergence rates of $ u_{\varepsilon} $ to its homogenized limit.

Citation: Rémi Goudey. A periodic homogenization problem with defects rare at infinity. Networks and Heterogeneous Media, doi: 10.3934/nhm.2022014
References:
[1]

G. Allaire, Homogenization and two-scale convergence, SIAM Journal on Mathematical Analysis, 23 (1992), 1482-1518.  doi: 10.1137/0523084.

[2]

M. Avellaneda and F.-H. Lin, Compactness methods in the theory of homogenization, Communications on Pure and Applied Mathematics, 40 (1987), 803-847.  doi: 10.1002/cpa.3160400607.

[3]

M. Avellaneda and F.-H. Lin, Compactness methods in the theory of homogenization II: Equations in non-divergence form, Communications on Pure and Applied Mathematics, 42 (1989), 139-172.  doi: 10.1002/cpa.3160420203.

[4]

M. Avellaneda and F.-H. Lin, $L^p$ bounds on singular integrals in homogenization, Communications on Pure and Applied Mathematics, 44 (1991), 897-910.  doi: 10.1002/cpa.3160440805.

[5]

A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures, Studies in Mathematics and its Applications, 5. North-Holland Publishing Co., Amsterdam-New York, 1978.

[6]

X. BlancM. Josien and C. Le Bris, Precised approximations in elliptic homogenization beyond the periodic setting, Asymptotic Analysis, 116 (2020), 93-137.  doi: 10.3233/ASY-191537.

[7]

X. Blanc, C. Le Bris and P.-L. Lions, On correctors for linear elliptic homogenization in the presence of local defects: The case of advection-diffusion, Journal de Mathématiques Pures et Appliquées, 124 (2019), 106–122. doi: 10.1016/j.matpur.2018.04.010.

[8]

X. BlancC. Le Bris and P.-L. Lions, On correctors for linear elliptic homogenization in the presence of local defects, Communications in Partial Differential Equations, 43 (2018), 965-997.  doi: 10.1080/03605302.2018.1484764.

[9]

X. BlancC. Le Bris and P.-L. Lions, Local profiles for elliptic problems at different scales: Defects in, and interfaces between periodic structures, Communications in Partial Differential Equations, 40 (2015), 2173-2236.  doi: 10.1080/03605302.2015.1043464.

[10]

X. BlancC. Le Bris and P.-L. Lions, A possible homogenization approach for the numerical simulation of periodic microstructures with defects, Milan Journal of Mathematics, 80 (2012), 351-367.  doi: 10.1007/s00032-012-0186-7.

[11]

X. BlancF. Legoll and A. Anantharaman, Asymptotic behaviour of Green functions of divergence form operators with periodic coefficients, Applied Mathematics Research Express, 2013 (2013), 79-101.  doi: 10.1093/amrx/abs013.

[12]

J. Deny and J.-L. Lions, Les espaces du type de Beppo Levi, Annales de l'institut Fourier, 5 (1954), 305-370.  doi: 10.5802/aif.55.

[13]

L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 1998.

[14] M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Princeton University Press, 1983. 
[15]

M. Giaquinta and L. Martinazzi, An Introduction to the Regularity Theory for Elliptic Systems, Harmonic Maps and Minimal Graphs, Edizioni Della Normale, Pisa, 2012. doi: 10.1007/978-88-7642-443-4.

[16]

R. Goudey, A periodic homogenization problem with defects rare at infinity, preprint, arXiv: 2109.05506.

[17]

R. Goudey, PhD Thesis, in preparation.

[18]

M. Gruter and K.-O. Widman, The Green function for uniformly elliptic equations, Manuscripta Mathematica, 37 (1982), 303-342.  doi: 10.1007/BF01166225.

[19]

V. V. Jikov, S. M Kozlov and O. A. Oleinik, Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, Berlin, 1994. doi: 10.1007/978-3-642-84659-5.

[20]

P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, Parts 1 & 2, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, 1 (1984), 109–145 and 223–283. doi: 10.1016/s0294-1449(16)30422-x.

[21]

L. Tartar, The General Theory of Homogenization: A Personalized Introduction, Springer, Berlin Heidelberger, 2009. doi: 10.1007/978-3-642-05195-1.

show all references

References:
[1]

G. Allaire, Homogenization and two-scale convergence, SIAM Journal on Mathematical Analysis, 23 (1992), 1482-1518.  doi: 10.1137/0523084.

[2]

M. Avellaneda and F.-H. Lin, Compactness methods in the theory of homogenization, Communications on Pure and Applied Mathematics, 40 (1987), 803-847.  doi: 10.1002/cpa.3160400607.

[3]

M. Avellaneda and F.-H. Lin, Compactness methods in the theory of homogenization II: Equations in non-divergence form, Communications on Pure and Applied Mathematics, 42 (1989), 139-172.  doi: 10.1002/cpa.3160420203.

[4]

M. Avellaneda and F.-H. Lin, $L^p$ bounds on singular integrals in homogenization, Communications on Pure and Applied Mathematics, 44 (1991), 897-910.  doi: 10.1002/cpa.3160440805.

[5]

A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures, Studies in Mathematics and its Applications, 5. North-Holland Publishing Co., Amsterdam-New York, 1978.

[6]

X. BlancM. Josien and C. Le Bris, Precised approximations in elliptic homogenization beyond the periodic setting, Asymptotic Analysis, 116 (2020), 93-137.  doi: 10.3233/ASY-191537.

[7]

X. Blanc, C. Le Bris and P.-L. Lions, On correctors for linear elliptic homogenization in the presence of local defects: The case of advection-diffusion, Journal de Mathématiques Pures et Appliquées, 124 (2019), 106–122. doi: 10.1016/j.matpur.2018.04.010.

[8]

X. BlancC. Le Bris and P.-L. Lions, On correctors for linear elliptic homogenization in the presence of local defects, Communications in Partial Differential Equations, 43 (2018), 965-997.  doi: 10.1080/03605302.2018.1484764.

[9]

X. BlancC. Le Bris and P.-L. Lions, Local profiles for elliptic problems at different scales: Defects in, and interfaces between periodic structures, Communications in Partial Differential Equations, 40 (2015), 2173-2236.  doi: 10.1080/03605302.2015.1043464.

[10]

X. BlancC. Le Bris and P.-L. Lions, A possible homogenization approach for the numerical simulation of periodic microstructures with defects, Milan Journal of Mathematics, 80 (2012), 351-367.  doi: 10.1007/s00032-012-0186-7.

[11]

X. BlancF. Legoll and A. Anantharaman, Asymptotic behaviour of Green functions of divergence form operators with periodic coefficients, Applied Mathematics Research Express, 2013 (2013), 79-101.  doi: 10.1093/amrx/abs013.

[12]

J. Deny and J.-L. Lions, Les espaces du type de Beppo Levi, Annales de l'institut Fourier, 5 (1954), 305-370.  doi: 10.5802/aif.55.

[13]

L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 1998.

[14] M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Princeton University Press, 1983. 
[15]

M. Giaquinta and L. Martinazzi, An Introduction to the Regularity Theory for Elliptic Systems, Harmonic Maps and Minimal Graphs, Edizioni Della Normale, Pisa, 2012. doi: 10.1007/978-88-7642-443-4.

[16]

R. Goudey, A periodic homogenization problem with defects rare at infinity, preprint, arXiv: 2109.05506.

[17]

R. Goudey, PhD Thesis, in preparation.

[18]

M. Gruter and K.-O. Widman, The Green function for uniformly elliptic equations, Manuscripta Mathematica, 37 (1982), 303-342.  doi: 10.1007/BF01166225.

[19]

V. V. Jikov, S. M Kozlov and O. A. Oleinik, Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, Berlin, 1994. doi: 10.1007/978-3-642-84659-5.

[20]

P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, Parts 1 & 2, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, 1 (1984), 109–145 and 223–283. doi: 10.1016/s0294-1449(16)30422-x.

[21]

L. Tartar, The General Theory of Homogenization: A Personalized Introduction, Springer, Berlin Heidelberger, 2009. doi: 10.1007/978-3-642-05195-1.

Figure 1.  Prototype perturbation in dimension $ d = 1 $
Figure 2.  Example of points in ambient dimension 2 that satisfy our assumptions along with their associated Voronoi diagram
Figure 3.  Example for the choice of the open subset $ W_x $ when $ d = 2 $
[1]

Wenjia Jing, Olivier Pinaud. A backscattering model based on corrector theory of homogenization for the random Helmholtz equation. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5377-5407. doi: 10.3934/dcdsb.2019063

[2]

Jie Zhao. Convergence rates for elliptic reiterated homogenization problems. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2787-2795. doi: 10.3934/cpaa.2013.12.2787

[3]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete and Continuous Dynamical Systems, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[4]

Fabio Camilli, Claudio Marchi. On the convergence rate in multiscale homogenization of fully nonlinear elliptic problems. Networks and Heterogeneous Media, 2011, 6 (1) : 61-75. doi: 10.3934/nhm.2011.6.61

[5]

Patrick Henning. Convergence of MsFEM approximations for elliptic, non-periodic homogenization problems. Networks and Heterogeneous Media, 2012, 7 (3) : 503-524. doi: 10.3934/nhm.2012.7.503

[6]

Grégoire Allaire, Zakaria Habibi. Second order corrector in the homogenization of a conductive-radiative heat transfer problem. Discrete and Continuous Dynamical Systems - B, 2013, 18 (1) : 1-36. doi: 10.3934/dcdsb.2013.18.1

[7]

Mamadou Sango. Homogenization of the Neumann problem for a quasilinear elliptic equation in a perforated domain. Networks and Heterogeneous Media, 2010, 5 (2) : 361-384. doi: 10.3934/nhm.2010.5.361

[8]

Antonio Vitolo. On the growth of positive entire solutions of elliptic PDEs and their gradients. Discrete and Continuous Dynamical Systems - S, 2014, 7 (6) : 1335-1346. doi: 10.3934/dcdss.2014.7.1335

[9]

Gábor Székelyhidi, Ben Weinkove. On a constant rank theorem for nonlinear elliptic PDEs. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6523-6532. doi: 10.3934/dcds.2016081

[10]

Ole Løseth Elvetun, Bjørn Fredrik Nielsen. A regularization operator for source identification for elliptic PDEs. Inverse Problems and Imaging, 2021, 15 (4) : 599-618. doi: 10.3934/ipi.2021006

[11]

Jean Louis Woukeng. $\sum $-convergence and reiterated homogenization of nonlinear parabolic operators. Communications on Pure and Applied Analysis, 2010, 9 (6) : 1753-1789. doi: 10.3934/cpaa.2010.9.1753

[12]

Andriy Bondarenko, Guy Bouchitté, Luísa Mascarenhas, Rajesh Mahadevan. Rate of convergence for correctors in almost periodic homogenization. Discrete and Continuous Dynamical Systems, 2005, 13 (2) : 503-514. doi: 10.3934/dcds.2005.13.503

[13]

Yi Cao, Dong Li, Lihe Wang. The optimal weighted $W^{2, p}$ estimates of elliptic equation with non-compatible conditions. Communications on Pure and Applied Analysis, 2011, 10 (2) : 561-570. doi: 10.3934/cpaa.2011.10.561

[14]

Yao Xu, Weisheng Niu. Periodic homogenization of elliptic systems with stratified structure. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 2295-2323. doi: 10.3934/dcds.2019097

[15]

Rong Dong, Dongsheng Li, Lihe Wang. Regularity of elliptic systems in divergence form with directional homogenization. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 75-90. doi: 10.3934/dcds.2018004

[16]

Ioana Ciotir, Nicolas Forcadel, Wilfredo Salazar. Homogenization of a stochastic viscous transport equation. Evolution Equations and Control Theory, 2021, 10 (2) : 353-364. doi: 10.3934/eect.2020070

[17]

Tomasz Komorowski, Adam Bobrowski. A quantitative Hopf-type maximum principle for subsolutions of elliptic PDEs. Discrete and Continuous Dynamical Systems - S, 2020, 13 (12) : 3495-3502. doi: 10.3934/dcdss.2020248

[18]

Farman Mamedov, Sara Monsurrò, Maria Transirico. Potential estimates and applications to elliptic equations. Conference Publications, 2015, 2015 (special) : 793-800. doi: 10.3934/proc.2015.0793

[19]

Weisheng Niu, Yao Xu. Convergence rates in homogenization of higher-order parabolic systems. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 4203-4229. doi: 10.3934/dcds.2018183

[20]

Arianna Giunti. Convergence rates for the homogenization of the Poisson problem in randomly perforated domains. Networks and Heterogeneous Media, 2021, 16 (3) : 341-375. doi: 10.3934/nhm.2021009

2021 Impact Factor: 1.41

Metrics

  • PDF downloads (121)
  • HTML views (68)
  • Cited by (0)

Other articles
by authors

[Back to Top]