We consider a homogenization problem for the diffusion equation $ -\operatorname{div}\left(a_{\varepsilon} \nabla u_{\varepsilon} \right) = f $ when the coefficient $ a_{\varepsilon} $ is a non-local perturbation of a periodic coefficient. The perturbation does not vanish but becomes rare at infinity in a sense made precise in the text. We prove the existence of a corrector, identify the homogenized limit and study the convergence rates of $ u_{\varepsilon} $ to its homogenized limit.
Citation: |
[1] |
G. Allaire, Homogenization and two-scale convergence, SIAM Journal on Mathematical Analysis, 23 (1992), 1482-1518.
doi: 10.1137/0523084.![]() ![]() ![]() |
[2] |
M. Avellaneda and F.-H. Lin, Compactness methods in the theory of homogenization, Communications on Pure and Applied Mathematics, 40 (1987), 803-847.
doi: 10.1002/cpa.3160400607.![]() ![]() ![]() |
[3] |
M. Avellaneda and F.-H. Lin, Compactness methods in the theory of homogenization II: Equations in non-divergence form, Communications on Pure and Applied Mathematics, 42 (1989), 139-172.
doi: 10.1002/cpa.3160420203.![]() ![]() ![]() |
[4] |
M. Avellaneda and F.-H. Lin, $L^p$ bounds on singular integrals in homogenization, Communications on Pure and Applied Mathematics, 44 (1991), 897-910.
doi: 10.1002/cpa.3160440805.![]() ![]() ![]() |
[5] |
A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures, Studies in Mathematics and its Applications, 5. North-Holland Publishing Co., Amsterdam-New York, 1978.
![]() ![]() |
[6] |
X. Blanc, M. Josien and C. Le Bris, Precised approximations in elliptic homogenization beyond the periodic setting, Asymptotic Analysis, 116 (2020), 93-137.
doi: 10.3233/ASY-191537.![]() ![]() ![]() |
[7] |
X. Blanc, C. Le Bris and P.-L. Lions, On correctors for linear elliptic homogenization in the presence of local defects: The case of advection-diffusion, Journal de Mathématiques Pures et Appliquées, 124 (2019), 106–122.
doi: 10.1016/j.matpur.2018.04.010.![]() ![]() ![]() |
[8] |
X. Blanc, C. Le Bris and P.-L. Lions, On correctors for linear elliptic homogenization in the presence of local defects, Communications in Partial Differential Equations, 43 (2018), 965-997.
doi: 10.1080/03605302.2018.1484764.![]() ![]() ![]() |
[9] |
X. Blanc, C. Le Bris and P.-L. Lions, Local profiles for elliptic problems at different scales: Defects in, and interfaces between periodic structures, Communications in Partial Differential Equations, 40 (2015), 2173-2236.
doi: 10.1080/03605302.2015.1043464.![]() ![]() ![]() |
[10] |
X. Blanc, C. Le Bris and P.-L. Lions, A possible homogenization approach for the numerical simulation of periodic microstructures with defects, Milan Journal of Mathematics, 80 (2012), 351-367.
doi: 10.1007/s00032-012-0186-7.![]() ![]() ![]() |
[11] |
X. Blanc, F. Legoll and A. Anantharaman, Asymptotic behaviour of Green functions of divergence form operators with periodic coefficients, Applied Mathematics Research Express, 2013 (2013), 79-101.
doi: 10.1093/amrx/abs013.![]() ![]() ![]() |
[12] |
J. Deny and J.-L. Lions, Les espaces du type de Beppo Levi, Annales de l'institut Fourier, 5 (1954), 305-370.
doi: 10.5802/aif.55.![]() ![]() ![]() |
[13] |
L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 1998.
![]() ![]() |
[14] |
M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Princeton University Press, 1983.
![]() ![]() |
[15] |
M. Giaquinta and L. Martinazzi, An Introduction to the Regularity Theory for Elliptic Systems, Harmonic Maps and Minimal Graphs, Edizioni Della Normale, Pisa, 2012.
doi: 10.1007/978-88-7642-443-4.![]() ![]() ![]() |
[16] |
R. Goudey, A periodic homogenization problem with defects rare at infinity, preprint, arXiv: 2109.05506.
![]() |
[17] |
R. Goudey, PhD Thesis, in preparation.
![]() |
[18] |
M. Gruter and K.-O. Widman, The Green function for uniformly elliptic equations, Manuscripta Mathematica, 37 (1982), 303-342.
doi: 10.1007/BF01166225.![]() ![]() ![]() |
[19] |
V. V. Jikov, S. M Kozlov and O. A. Oleinik, Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, Berlin, 1994.
doi: 10.1007/978-3-642-84659-5.![]() ![]() ![]() |
[20] |
P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, Parts 1 & 2, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, 1 (1984), 109–145 and 223–283.
doi: 10.1016/s0294-1449(16)30422-x.![]() ![]() ![]() |
[21] |
L. Tartar, The General Theory of Homogenization: A Personalized Introduction, Springer, Berlin Heidelberger, 2009.
doi: 10.1007/978-3-642-05195-1.![]() ![]() ![]() |
Prototype perturbation in dimension
Example of points in ambient dimension 2 that satisfy our assumptions along with their associated Voronoi diagram
Example for the choice of the open subset