-
Previous Article
Optimization of vaccination for COVID-19 in the midst of a pandemic
- NHM Home
- This Issue
-
Next Article
Bi-fidelity stochastic collocation methods for epidemic transport models with uncertainties
A measure model for the spread of viral infections with mutations
1. | School of Mathematical and Statistical Science, Arizona State University, Tempe, AZ, 85281, USA |
2. | Department of Mathematical Sciences and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, 08102, USA |
Genetic variations in the COVID-19 virus are one of the main causes of the COVID-19 pandemic outbreak in 2020 and 2021. In this article, we aim to introduce a new type of model, a system coupled with ordinary differential equations (ODEs) and measure differential equation (MDE), stemming from the classical SIR model for the variants distribution. Specifically, we model the evolution of susceptible $ S $ and removed $ R $ populations by ODEs and the infected $ I $ population by a MDE comprised of a probability vector field (PVF) and a source term. In addition, the ODEs for $ S $ and $ R $ contains terms that are related to the measure $ I $. We establish analytically the well-posedness of the coupled ODE-MDE system by using generalized Wasserstein distance. We give two examples to show that the proposed ODE-MDE model coincides with the classical SIR model in case of constant or time-dependent parameters as special cases.
References:
[1] |
S. Anita and V. Capasso, Reaction-diffusion systems in epidemiology, 2017. |
[2] |
N. Bellomo, R. Bingham, M. A. J. Chaplain, G. Dosi, G. Forni, D. A. Knopoff, J. Lowengrub, R. Twarock and M. E. Virgillito, A multi-scale model of virus pandemic: Heterogeneous interactive entities in a globally connected world, Math. Models Methods Appl. Sci., 30 (2020), 1591–1651, arXiv: 2006.03915.
doi: 10.1142/S0218202520500323. |
[3] |
G. A. Bonaschi, J. A. Carrillo, M. Di Francesco and M. A. Peletier,
Equivalence of gradient flows and entropy solutions for singular nonlocal interaction equations in 1D, ESAIM Control Optim. Calc. Var., 21 (2015), 414-441.
doi: 10.1051/cocv/2014032. |
[4] |
T. Britton, F. Ball and P. Trapman,
A mathematical model reveals the influence of population heterogeneity on herd immunity to SARS-CoV-2, Science, 369 (2020), 846-849.
doi: 10.1126/science.abc6810. |
[5] |
Y.-C. Chen, P.-E. Lu and C.-S. Chang, A time-dependent SIR model for COVID-19, IEEE Trans. Network Sci. Eng., 7 (2020), 3279–3294, arXiv: 2003.00122.
doi: 10.1109/TNSE.2020.3024723. |
[6] |
R. M. Colombo and M. Garavello,
Well posedness and control in a nonlocal SIR model, Appl. Math. Optim., 84 (2021), 737-771.
doi: 10.1007/s00245-020-09660-9. |
[7] |
R. M. Colombo, M. Garavello, F. Marcellini and E. Rossi, An age and space structured SIR model describing the COVID-19 pandemic, Journal of Mathematics in Industry, 10 (2020), Paper No. 22, 20 pp.
doi: 10.1186/s13362-020-00090-4. |
[8] |
G. Giordano, F. Blanchini, R. Bruno, P. Colaneri, A. Di Filippo, A. Di Matteo and M. Colaneri,
Modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy, Nature Medicine, 26 (2020), 855-860.
doi: 10.1038/s41591-020-0883-7. |
[9] |
V. Kala, K. Guo, E. Swantek, A. Tong, M.. Chyba, Y. Mileyko, C. Gray, T. Lee and A. E. Koniges, Pandemics in Hawai'i: 1918 Influenza and COVID-19, The Ninth International Conference on Global Health Challenges GLOBAL HEALTH 2020, IARIA, 2020. |
[10] |
A. Keimer and L. Pflug, Modeling infectious diseases using integro-differential equations: Optimal control strategies for policy decisions and applications in covid-19, 2020. |
[11] |
W. O. Kermack and A. G. McKendrick,
Contributions to the mathematical theory of epidemics. II.-the problem of endemicity, Proceedings of the Royal Society of London. Series A, containing papers of a mathematical and physical character, 138 (1932), 55-83.
doi: 10.1098/rspa.1932.0171. |
[12] |
K. Kupferschmidt,
Evolving threat, Science, 373 (2021), 844-849.
doi: 10.1126/science.373.6557.844. |
[13] |
C. J. E. Metcalf, D. H. Morris and S. W. Park,
Mathematical models to guide pandemic response, Science, 369 (2020), 368-369.
doi: 10.1126/science.abd1668. |
[14] |
K. R. Moran, G. Fairchild, N. Generous, K. Hickmann, D. Osthus, R. Priedhorsky, J. Hyman and S. Y. Del Valle, Epidemic forecasting is messier than weather forecasting: The role of human behavior and internet data streams in epidemic forecast, The Journal of Infectious Diseases, 214 (2016), S404–S408.
doi: 10.1093/infdis/jiw375. |
[15] |
B. Piccoli,
Measure differential equations, Archive for Rational Mechanics and Analysis, 233 (2019), 1289-1317.
doi: 10.1007/s00205-019-01379-4. |
[16] |
B. Piccoli and F. Rossi,
Generalized Wasserstein distance and its application to transport equations with source, Archive for Rational Mechanics and Analysis, 211 (2014), 335-358.
doi: 10.1007/s00205-013-0669-x. |
[17] |
B. Piccoli and F. Rossi,
On properties of the generalized Wasserstein distance, Archive for Rational Mechanics and Analysis, 222 (2016), 1339-1365.
doi: 10.1007/s00205-016-1026-7. |
[18] |
B. Piccoli and F. Rossi,
Measure dynamics with probability vector fields and sources, Discrete Contin. Dyn. Syst., 39 (2019), 6207-6230.
doi: 10.3934/dcds.2019270. |
[19] |
N. W. Ruktanonchai, J. R. Floyd, S. Lai, C. W. Ruktanonchai, A. Sadilek, P. Rente-Lourenco, X. Ben, A. Carioli, J. Gwinn and J. E. Steele,
Assessing the impact of coordinated COVID-19 exit strategies across europe, Science, 369 (2020), 1465-1470.
doi: 10.1126/science.abc5096. |
[20] |
A. Vespignani, H. Tian, C. Dye, J. O. Lloyd-Smith, R. M. Eggo, M. Shrestha, S. V. Scarpino, B. Gutierrez, M. U. G. Kraemer, J. Wu and et al.,
Modelling covid-19, Nature Reviews Physics, 2 (2020), 279-281.
|
[21] |
C. Villani, Topics in Optimal Transportation, Graduate Studies in Mathematics, 58. American Mathematical Society, Providence, RI, 2003.
doi: 10.1090/gsm/058. |
[22] |
J. Zhang, M. Litvinova, Y. Liang, Y. Wang, W. Wang, S. Zhao, Q. Wu, S. Merler, C. Viboud and A. Vespignani,
Changes in contact patterns shape the dynamics of the COVID-19 outbreak in China, Science, 368 (2020), 1481-1486.
doi: 10.1126/science.abb8001. |
[23] |
J. Zhang, M. Litvinova, W. Wang, Y. Wang, X. Deng, X. Chen, M. Li, W. Zheng, L. Yi and X. Chen,
Evolving epidemiology and transmission dynamics of coronavirus disease 2019 outside Hubei province, China: A descriptive and modelling study, The Lancet Infectious Diseases, 20 (2020), 793-802.
doi: 10.1016/S1473-3099(20)30230-9. |
show all references
References:
[1] |
S. Anita and V. Capasso, Reaction-diffusion systems in epidemiology, 2017. |
[2] |
N. Bellomo, R. Bingham, M. A. J. Chaplain, G. Dosi, G. Forni, D. A. Knopoff, J. Lowengrub, R. Twarock and M. E. Virgillito, A multi-scale model of virus pandemic: Heterogeneous interactive entities in a globally connected world, Math. Models Methods Appl. Sci., 30 (2020), 1591–1651, arXiv: 2006.03915.
doi: 10.1142/S0218202520500323. |
[3] |
G. A. Bonaschi, J. A. Carrillo, M. Di Francesco and M. A. Peletier,
Equivalence of gradient flows and entropy solutions for singular nonlocal interaction equations in 1D, ESAIM Control Optim. Calc. Var., 21 (2015), 414-441.
doi: 10.1051/cocv/2014032. |
[4] |
T. Britton, F. Ball and P. Trapman,
A mathematical model reveals the influence of population heterogeneity on herd immunity to SARS-CoV-2, Science, 369 (2020), 846-849.
doi: 10.1126/science.abc6810. |
[5] |
Y.-C. Chen, P.-E. Lu and C.-S. Chang, A time-dependent SIR model for COVID-19, IEEE Trans. Network Sci. Eng., 7 (2020), 3279–3294, arXiv: 2003.00122.
doi: 10.1109/TNSE.2020.3024723. |
[6] |
R. M. Colombo and M. Garavello,
Well posedness and control in a nonlocal SIR model, Appl. Math. Optim., 84 (2021), 737-771.
doi: 10.1007/s00245-020-09660-9. |
[7] |
R. M. Colombo, M. Garavello, F. Marcellini and E. Rossi, An age and space structured SIR model describing the COVID-19 pandemic, Journal of Mathematics in Industry, 10 (2020), Paper No. 22, 20 pp.
doi: 10.1186/s13362-020-00090-4. |
[8] |
G. Giordano, F. Blanchini, R. Bruno, P. Colaneri, A. Di Filippo, A. Di Matteo and M. Colaneri,
Modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy, Nature Medicine, 26 (2020), 855-860.
doi: 10.1038/s41591-020-0883-7. |
[9] |
V. Kala, K. Guo, E. Swantek, A. Tong, M.. Chyba, Y. Mileyko, C. Gray, T. Lee and A. E. Koniges, Pandemics in Hawai'i: 1918 Influenza and COVID-19, The Ninth International Conference on Global Health Challenges GLOBAL HEALTH 2020, IARIA, 2020. |
[10] |
A. Keimer and L. Pflug, Modeling infectious diseases using integro-differential equations: Optimal control strategies for policy decisions and applications in covid-19, 2020. |
[11] |
W. O. Kermack and A. G. McKendrick,
Contributions to the mathematical theory of epidemics. II.-the problem of endemicity, Proceedings of the Royal Society of London. Series A, containing papers of a mathematical and physical character, 138 (1932), 55-83.
doi: 10.1098/rspa.1932.0171. |
[12] |
K. Kupferschmidt,
Evolving threat, Science, 373 (2021), 844-849.
doi: 10.1126/science.373.6557.844. |
[13] |
C. J. E. Metcalf, D. H. Morris and S. W. Park,
Mathematical models to guide pandemic response, Science, 369 (2020), 368-369.
doi: 10.1126/science.abd1668. |
[14] |
K. R. Moran, G. Fairchild, N. Generous, K. Hickmann, D. Osthus, R. Priedhorsky, J. Hyman and S. Y. Del Valle, Epidemic forecasting is messier than weather forecasting: The role of human behavior and internet data streams in epidemic forecast, The Journal of Infectious Diseases, 214 (2016), S404–S408.
doi: 10.1093/infdis/jiw375. |
[15] |
B. Piccoli,
Measure differential equations, Archive for Rational Mechanics and Analysis, 233 (2019), 1289-1317.
doi: 10.1007/s00205-019-01379-4. |
[16] |
B. Piccoli and F. Rossi,
Generalized Wasserstein distance and its application to transport equations with source, Archive for Rational Mechanics and Analysis, 211 (2014), 335-358.
doi: 10.1007/s00205-013-0669-x. |
[17] |
B. Piccoli and F. Rossi,
On properties of the generalized Wasserstein distance, Archive for Rational Mechanics and Analysis, 222 (2016), 1339-1365.
doi: 10.1007/s00205-016-1026-7. |
[18] |
B. Piccoli and F. Rossi,
Measure dynamics with probability vector fields and sources, Discrete Contin. Dyn. Syst., 39 (2019), 6207-6230.
doi: 10.3934/dcds.2019270. |
[19] |
N. W. Ruktanonchai, J. R. Floyd, S. Lai, C. W. Ruktanonchai, A. Sadilek, P. Rente-Lourenco, X. Ben, A. Carioli, J. Gwinn and J. E. Steele,
Assessing the impact of coordinated COVID-19 exit strategies across europe, Science, 369 (2020), 1465-1470.
doi: 10.1126/science.abc5096. |
[20] |
A. Vespignani, H. Tian, C. Dye, J. O. Lloyd-Smith, R. M. Eggo, M. Shrestha, S. V. Scarpino, B. Gutierrez, M. U. G. Kraemer, J. Wu and et al.,
Modelling covid-19, Nature Reviews Physics, 2 (2020), 279-281.
|
[21] |
C. Villani, Topics in Optimal Transportation, Graduate Studies in Mathematics, 58. American Mathematical Society, Providence, RI, 2003.
doi: 10.1090/gsm/058. |
[22] |
J. Zhang, M. Litvinova, Y. Liang, Y. Wang, W. Wang, S. Zhao, Q. Wu, S. Merler, C. Viboud and A. Vespignani,
Changes in contact patterns shape the dynamics of the COVID-19 outbreak in China, Science, 368 (2020), 1481-1486.
doi: 10.1126/science.abb8001. |
[23] |
J. Zhang, M. Litvinova, W. Wang, Y. Wang, X. Deng, X. Chen, M. Li, W. Zheng, L. Yi and X. Chen,
Evolving epidemiology and transmission dynamics of coronavirus disease 2019 outside Hubei province, China: A descriptive and modelling study, The Lancet Infectious Diseases, 20 (2020), 793-802.
doi: 10.1016/S1473-3099(20)30230-9. |
[1] |
Kaifa Wang, Yu Jin, Aijun Fan. The effect of immune responses in viral infections: A mathematical model view. Discrete and Continuous Dynamical Systems - B, 2014, 19 (10) : 3379-3396. doi: 10.3934/dcdsb.2014.19.3379 |
[2] |
Rossella Della Marca, Nadia Loy, Andrea Tosin. An SIR–like kinetic model tracking individuals' viral load. Networks and Heterogeneous Media, 2022, 17 (3) : 467-494. doi: 10.3934/nhm.2022017 |
[3] |
Qing Ma, Yanjun Wang. Distributionally robust chance constrained svm model with $\ell_2$-Wasserstein distance. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021212 |
[4] |
Yang Yang, Yun-Rui Yang, Xin-Jun Jiao. Traveling waves for a nonlocal dispersal SIR model equipped delay and generalized incidence. Electronic Research Archive, 2020, 28 (1) : 1-13. doi: 10.3934/era.2020001 |
[5] |
Xing Huang, Feng-Yu Wang. Mckean-Vlasov sdes with drifts discontinuous under wasserstein distance. Discrete and Continuous Dynamical Systems, 2021, 41 (4) : 1667-1679. doi: 10.3934/dcds.2020336 |
[6] |
Monika Joanna Piotrowska, Urszula Foryś, Marek Bodnar, Jan Poleszczuk. A simple model of carcinogenic mutations with time delay and diffusion. Mathematical Biosciences & Engineering, 2013, 10 (3) : 861-872. doi: 10.3934/mbe.2013.10.861 |
[7] |
Helen Moore, Weiqing Gu. A mathematical model for treatment-resistant mutations of HIV. Mathematical Biosciences & Engineering, 2005, 2 (2) : 363-380. doi: 10.3934/mbe.2005.2.363 |
[8] |
Giuseppe Da Prato. An integral inequality for the invariant measure of some finite dimensional stochastic differential equation. Discrete and Continuous Dynamical Systems - B, 2016, 21 (9) : 3015-3027. doi: 10.3934/dcdsb.2016085 |
[9] |
Chunhua Shan, Hongjun Gao, Huaiping Zhu. Dynamics of a delay Schistosomiasis model in snail infections. Mathematical Biosciences & Engineering, 2011, 8 (4) : 1099-1115. doi: 10.3934/mbe.2011.8.1099 |
[10] |
Jinliang Wang, Jingmei Pang, Toshikazu Kuniya. A note on global stability for malaria infections model with latencies. Mathematical Biosciences & Engineering, 2014, 11 (4) : 995-1001. doi: 10.3934/mbe.2014.11.995 |
[11] |
Qiyuan Wei, Liwei Zhang. An accelerated differential equation system for generalized equations. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021195 |
[12] |
Ruiqiang He, Xiangchu Feng, Xiaolong Zhu, Hua Huang, Bingzhe Wei. RWRM: Residual Wasserstein regularization model for image restoration. Inverse Problems and Imaging, 2021, 15 (6) : 1307-1332. doi: 10.3934/ipi.2020069 |
[13] |
E. Almaraz, A. Gómez-Corral. On SIR-models with Markov-modulated events: Length of an outbreak, total size of the epidemic and number of secondary infections. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2153-2176. doi: 10.3934/dcdsb.2018229 |
[14] |
Jonathan Zinsl. The gradient flow of a generalized Fisher information functional with respect to modified Wasserstein distances. Discrete and Continuous Dynamical Systems - S, 2017, 10 (4) : 919-933. doi: 10.3934/dcdss.2017047 |
[15] |
Suqi Ma. Low viral persistence of an immunological model. Mathematical Biosciences & Engineering, 2012, 9 (4) : 809-817. doi: 10.3934/mbe.2012.9.809 |
[16] |
Urszula Foryś, Beata Zduniak. Two-stage model of carcinogenic mutations with the influence of delays. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2501-2519. doi: 10.3934/dcdsb.2014.19.2501 |
[17] |
Vianney Perchet, Marc Quincampoix. A differential game on Wasserstein space. Application to weak approachability with partial monitoring. Journal of Dynamics and Games, 2019, 6 (1) : 65-85. doi: 10.3934/jdg.2019005 |
[18] |
Helge Dietert, Josephine Evans, Thomas Holding. Contraction in the Wasserstein metric for the kinetic Fokker-Planck equation on the torus. Kinetic and Related Models, 2018, 11 (6) : 1427-1441. doi: 10.3934/krm.2018056 |
[19] |
Chuchu Chen, Jialin Hong, Yulan Lu. Stochastic differential equation with piecewise continuous arguments: Markov property, invariant measure and numerical approximation. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022098 |
[20] |
Narcisa Apreutesei, Nikolai Bessonov, Vitaly Volpert, Vitali Vougalter. Spatial structures and generalized travelling waves for an integro-differential equation. Discrete and Continuous Dynamical Systems - B, 2010, 13 (3) : 537-557. doi: 10.3934/dcdsb.2010.13.537 |
2021 Impact Factor: 1.41
Tools
Metrics
Other articles
by authors
[Back to Top]