This paper is devoted to the study of the bitemperature Euler system in a polyatomic setting. Physically, this model describes a mixture of one species of ions and one species of electrons in the quasi-neutral regime. We firstly derive the model starting from a kinetic polyatomic model and performing next a fluid limit. This kinetic model is shown to satisfy fundamental properties. Some exact solutions are presented. Finally, a numerical scheme is derived and proved to coincide with an approximation designed in [
Citation: |
[1] |
R. Abgrall and S. Karni, A comment on the computation of non-conservative products, J. Comput. Phys., 229 (2010), 2759-2763.
doi: 10.1016/j.jcp.2009.12.015.![]() ![]() ![]() |
[2] |
P. Andries, P. Le Tallec, J.-P. Perlat and B. Perthame, Entropy condition for the ES BGK model of Boltzmann equation for mono and polyatomic gases, Eur. J. Mech. B Fluids, 19 (2000), 813-830.
doi: 10.1016/S0997-7546(00)01103-1.![]() ![]() ![]() |
[3] |
D. Aregba-Driollet, J. Breil, S. Brull, B. Dubroca and E. Estibals, Modelling and numerical approximation for the nonconservative bitemperature Euler model, ESAIM Math. Model. Numer. Anal., 52 (2018), 1353-1383.
doi: 10.1051/m2an/2017007.![]() ![]() ![]() |
[4] |
D. Aregba-Driollet and S. Brull, A viscous approximation of the bitemperature Euler system, Comm. Math. Sci., 17 (2019), 1135-1147.
doi: 10.4310/CMS.2019.v17.n4.a14.![]() ![]() ![]() |
[5] |
D. Aregba-Driollet, S. Brull and Y.-J. Peng, Global existence of smooth solutions for a non-conservative bitemperature Euler model, SIAM J. Math. Anal., 53 (2021), 1886-1907.
doi: 10.1137/20M1353812.![]() ![]() ![]() |
[6] |
D. Aregba-Driollet, S. Brull and C. Prigent, A discrete velocity numerical scheme for the two-dimensional bitemperature Euler system, SIAM J. Numer. Anal., 60 (2022), 28-51.
doi: 10.1137/21M1407185.![]() ![]() ![]() |
[7] |
D. Aregba-Driollet and R. Natalini, Discrete kinetic schemes for multidimensional systems of conservation laws, SIAM J. Numer. Anal., 37 (2000), 1973-2004.
doi: 10.1137/S0036142998343075.![]() ![]() ![]() |
[8] |
T. Arima, S. Taniguchi, T. Ruggeri and M. Sugiyama, Monoatomic rarefied gas as a singular limit of polyatomic gas in extended thermodynamics, Physics letter A, 337 (2013), 2136-2140.
doi: 10.1016/j.physleta.2013.06.035.![]() ![]() ![]() |
[9] |
C. Baranger, M. Bisi, S. Brull and L. Desvillettes, On the Chapman-Enskog asymptotics of mixture of monoatomic and polyatomic rarefied gases, Kin. Rel. Mod., 11 (2018), 821-858.
doi: 10.3934/krm.2018033.![]() ![]() ![]() |
[10] |
F. Bernard, A. Iollo and G. Puppo, BGK polyatomic model for rarefied flows, J. Sci. Comput., 78 (2019), 1893-1916.
doi: 10.1007/s10915-018-0864-x.![]() ![]() ![]() |
[11] |
M. Bisi, R. Monaco and A. J. Soares, A BGK model for reactive mixtures of polyatomic gases with continuous internal energy, J. Phys. A, 51 (2018), 125501, 29 pp.
doi: 10.1088/1751-8121/aaac8e.![]() ![]() ![]() |
[12] |
M. Bisi, T. Ruggeri and G. Spiga, Dynamical pressure in a polyatomic gas: Interplay between kinetic theory and Extended Thermodynamics, Kinet. Relat. Models, 11 (2018), 71-95.
doi: 10.3934/krm.2018004.![]() ![]() ![]() |
[13] |
M. Bisi and G. Spiga, On a kinetic BGK model for slow chemical reactions, Kinet. Relat. Models, 4 (2011), 153-167.
doi: 10.3934/krm.2011.4.153.![]() ![]() ![]() |
[14] |
M. Bisi and R. Travaglini, A polyatomic model for mixtures for monoatomic and polyatomic gases, Phys. A, 547 (2020), 124441, 18 pp.
doi: 10.1016/j.physa.2020.124441.![]() ![]() ![]() |
[15] |
A. V. Bobylev, M. Bisi, M. Groppi, G. Spiga and I. Potapenko, A general consistent BGK model for gas mixtures, Kinet. Relat. Models, 11 (2018), 1377-1393.
doi: 10.3934/krm.2018054.![]() ![]() ![]() |
[16] |
C. Borgnakke and P. S. Larsen, Statistical collision model for Monte-Carlo simulation of polyatomic mixtures, Journ. Comput. Phys., 18 (1975), 405-420.
doi: 10.1016/0021-9991(75)90094-7.![]() ![]() |
[17] |
J.-F Bourgat, L. Desvillettes, P. Le Tallec and B. Perthame, Microreversible collisions for polyatomic gases and Boltzmann's theorem, Eur. Journ. Fluid Mech., 13 (1994), 237-254.
![]() ![]() |
[18] |
A. Bressan, Hyperbolic Systems of Conservation Laws, Oxford Lecture Series in Mathematics and its Applications, 20. Oxford University Press, Oxford, 2000.
![]() ![]() |
[19] |
S. Brull, An Ellipsoidal Statistical Model for a monoatomic and polyatomic gas mixture, Comm. Math. Sci., 19 (2021), 2177-2194.
doi: 10.4310/CMS.2021.v19.n8.a5.![]() ![]() ![]() |
[20] |
S. Brull, B. Dubroca and C. Prigent, A kinetic approach of the bi-temperature Euler model, Kinet. Relat. Models, 13 (2020), 33-61.
doi: 10.3934/krm.2020002.![]() ![]() ![]() |
[21] |
S. Brull and J. Schneider, On the Ellipsoidal Statistical Model for polyatomic gases, Cont. Mech. Thermodyn, 20 (2009), 489-508.
doi: 10.1007/s00161-009-0095-3.![]() ![]() ![]() |
[22] |
C. Chalons and F. Coquel, Navier-Stokes equations with several independent pressure laws and explicit predictor-corrector schemes, Numer. Math., 101 (2005), 451-478.
doi: 10.1007/s00211-005-0612-7.![]() ![]() ![]() |
[23] |
F. Coquel and C. Marmignon, Numerical methods for weakly ionized gas, Astrophysics and Space Science, 260 (1998), 15-27.
doi: 10.1023/A:1001870802972.![]() ![]() ![]() |
[24] |
G. Dal Maso, P. G. Le Floch and F. Murat, Definition and weak stability of nonconservative products, J. Math. Pures et Appl., 74 (1995), 483-548.
![]() ![]() |
[25] |
L. Desvillettes, Sur un modèle de type Borgnakke-Larsen conduisant à des lois d'énergie non-linéaires en température pour les gas parfaits polyatomiques, Ann. Fac. Sci. Toulouse Math., 6 (1997), 257-262.
doi: 10.5802/afst.864.![]() ![]() ![]() |
[26] |
L. Desvillettes, R. Monaco and F. Salvarani, A kinetic model allowing to obtain the energy law of polytropic gases in the presence of chemical reactions, Eur. J. Mech. B Fluids, 24 (2005), 219-236.
doi: 10.1016/j.euromechflu.2004.07.004.![]() ![]() ![]() |
[27] |
A. Ern and V. Giovangigli, The kinetic equilibrium regime, Physica A, 260 (1998), 49-72.
![]() |
[28] |
E. Estibals, H. Guillard and A. Sangam, Derivation and numerical approximation of two-temperature Euler plasma model, J. Comput. Phys., 444 (2021), 110565, 48 pp.
doi: 10.1016/j.jcp.2021.110565.![]() ![]() ![]() |
[29] |
H. Funagane, S. Takata, K. Aoki and K. Kugimoto, Poiseuille flow and thermal transpiration of a rarefied polyatomic gas through a circular tube with applications to microflows, Boll. Unione Mat. Ital., 4 (2011), 19-46.
![]() ![]() |
[30] |
V. Giovangigli, Multicomponent Flow Modeling. Modeling and Simulation in Science, Engineering and Technology, Birkhäuser Boston, Inc., Boston, MA, 1999.
doi: 10.1007/978-1-4612-1580-6.![]() ![]() ![]() |
[31] |
B. Graille, T. Magin and M. Massot, Kinetic theory of plasmas, Maths models and methods in the Appl. Sci., 19 (2009), 527-599.
doi: 10.1142/S021820250900353X.![]() ![]() ![]() |
[32] |
J. M. Greene, Improved Bhatnagar-Gross-Krook model of electron-ion collisions, Phys.Fluids, 16 (1973), 2022-2023.
![]() |
[33] |
J. D. Huba, NRL Plasma Formulary, Revised 2013 version, NRL.
![]() |
[34] |
C. Klingenberg, M. Pirner and G. Puppo, A consistent kinetic model for a two-component mixture of polyatomic molecules, Comm. in Math. Sci., 17 (2019), 149-173.
doi: 10.4310/CMS.2019.v17.n1.a6.![]() ![]() ![]() |
[35] |
S. Kosuge, K. Aoki and T. Goto, Shock wave structure in polyatomic gases: Numerical analysis using a model Boltzmann equation, AIP Conf. Proc., 1786 (2016), 180004.
doi: 10.1063/1.4967673.![]() ![]() |
[36] |
C. Pares, Numerical methods for nonconservative hyperbolic systems: A theoretical framework, SIAM J. Numer. Anal., 44 (2006), 300-321.
doi: 10.1137/050628052.![]() ![]() ![]() |
[37] |
B. Perthame and C. Simeoni, A kinetic scheme for the Saint-Venant system with a source term, Calcolo, 38 (2001), 201-231.
doi: 10.1007/s10092-001-8181-3.![]() ![]() ![]() |
[38] |
S. Takata, H. Funagane and K. Aoki, Fluid modeling for the Knudsen compressor: Case of polyatomic gases, Kinet. Relat. Models, 3 (2010), 353-372.
doi: 10.3934/krm.2010.3.353.![]() ![]() ![]() |
[39] |
Q. Wargnier, S. Faure, S. B. Graille, T. Magin and M. Massot, Numerical treatment of the nonconservative product in a multiscale fluid model for plasmas in thermal nonequilibrium: Application to solar physics, SIAM J. Sci. Comput., 42 (2020), B492–B519.
doi: 10.1137/18M1194225.![]() ![]() ![]() |
[40] |
B. Zel'dovich and P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Academic Press, 1966.
![]() |
Double rarefaction. Left: density. Right: velocity
Double rarefaction. Left: electronic temperature. Right : ionic temperature
Total density (left) and electronic temperature (right) at time
Implosion test case with
Implosion test case with