We derive von-Kármán plate theory from three dimensional, purely atomistic models with classical particle interaction. This derivation is established as a $ \Gamma $-limit when considering the limit where the interatomic distance $ \varepsilon $ as well as the thickness of the plate $ h $ tend to zero. In particular, our analysis includes the ultrathin case where $ \varepsilon \sim h $, leading to a new von-Kármán plate theory for finitely many layers.
Citation: |
[1] |
R. Alicandro and M. Cicalese, A general integral representation result for continuum limits of discrete energies with superlinear growth, SIAM J. Math. Anal., 36 (2004), 1-37.
doi: 10.1137/S0036141003426471.![]() ![]() ![]() |
[2] |
S. Bartels, Numerical solution of a Föppl–von Kármán model, SIAM J. Numer. Anal., 55 (2017), 1505-1524.
doi: 10.1137/16M1069791.![]() ![]() ![]() |
[3] |
X. Blanc, C. Le Bris and P.-L. Lions, From molecular models to continuum mechanics, Arch. Ration. Mech. Anal., 164 (2002), 341-381.
doi: 10.1007/s00205-002-0218-5.![]() ![]() ![]() |
[4] |
J. Braun, Connecting atomistic and continuous models of elastodynamics, Arch. Ration. Mech. Anal., 224 (2017), 907-953.
doi: 10.1007/s00205-017-1091-6.![]() ![]() ![]() |
[5] |
J. Braun and B. Schmidt, Existence and convergence of solutions of the boundary value problem in atomistic and continuum nonlinear elasticity theory, Calc. Var. Partial Differential Equations, 55 (2016), 36pp.
doi: 10.1007/s00526-016-1048-x.![]() ![]() ![]() |
[6] |
J. Braun and B. Schmidt, On the passage from atomistic systems to nonlinear elasticity theory for general multi-body potentials with $p$-growth, Netw. Heterog. Media, 8 (2013), 879-912.
doi: 10.3934/nhm.2013.8.879.![]() ![]() ![]() |
[7] |
S. Conti and F. Maggi, Confining thin elastic sheets and folding paper, Arch. Ration. Mech. Anal., 187 (2008), 1-48.
doi: 10.1007/s00205-007-0076-2.![]() ![]() ![]() |
[8] |
M. de Benito Delgado and B. Schmidt, Energy minimizing configurations of pre-strained multilayers, J. Elasticity, 140 (2020), 303-335.
doi: 10.1007/s10659-020-09771-y.![]() ![]() ![]() |
[9] |
M. de Benito Delgado and B. Schmidt, A hierarchy of multilayered plate models, ESAIM Control Optim. Calc. Var., 27 (2021), 35pp.
doi: 10.1051/cocv/2020067.![]() ![]() ![]() |
[10] |
W. E and P. Ming, Cauchy-Born rule and the stability of crystalline solids: Static problems, Arch. Ration. Mech. Anal., 183 (2007), 241-297.
doi: 10.1007/s00205-006-0031-7.![]() ![]() ![]() |
[11] |
G. Friesecke and R. D. James, A scheme for the passage from atomic to continuum theory for thin films, nanotubes and nanorods, J. Mech. Phys. Solids, 48 (2000), 1519-1540.
doi: 10.1016/S0022-5096(99)00091-5.![]() ![]() ![]() |
[12] |
G. Friesecke, R. D. James and S. Müller, The Föppl-von Kármán plate theory as a low energy Γ-limit of nonlinear elasticity, C. R. Math. Acad. Sci. Paris, 335 (2002), 201-206.
doi: 10.1016/S1631-073X(02)02388-9.![]() ![]() ![]() |
[13] |
G. Friesecke, R. D. James and S. Müller, A hierarchy of plate models derived from nonlinear elasticity by gamma-convergence, Arch. Ration. Mech. Anal., 180 (2006), 183-236.
doi: 10.1007/s00205-005-0400-7.![]() ![]() ![]() |
[14] |
G. Friesecke, R. D. James and S. Müller, A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity, Comm. Pure Appl. Math., 55 (2002), 1461-1506.
doi: 10.1002/cpa.10048.![]() ![]() ![]() |
[15] |
H. Le Dret and A. Raoult, The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity, J. Math. Pures Appl. (9), 74 (1995), 549-578.
![]() ![]() |
[16] |
H. Olbermann and E. Runa, Interpenetration of matter in plate theories obtained as Γ-limits, ESAIM Control Optim. Calc. Var., 23 (2017), 119-136.
doi: 10.1051/cocv/2015042.![]() ![]() ![]() |
[17] |
C. Ortner and F. Theil, Justification of the Cauchy-Born approximation of elastodynamics, Arch. Ration. Mech. Anal., 207 (2013), 1025-1073.
doi: 10.1007/s00205-012-0592-6.![]() ![]() ![]() |
[18] |
B. Schmidt, A derivation of continuum nonlinear plate theory from atomistic models, Multiscale Model. Simul., 5 (2006), 664-694.
doi: 10.1137/050646251.![]() ![]() ![]() |
[19] |
B. Schmidt, On the derivation of linear elasticity from atomistic models, Netw. Heterog. Media, 4 (2009), 789-812.
doi: 10.3934/nhm.2009.4.789.![]() ![]() ![]() |
[20] |
B. Schmidt, On the passage from atomic to continuum theory for thin films, Arch. Ration. Mech. Anal., 190 (2008), 1-55.
doi: 10.1007/s00205-008-0138-0.![]() ![]() ![]() |
[21] |
B. Schmidt, Qualitative properties of a continuum theory for thin films, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 25 (2008), 43-75.
doi: 10.1016/j.anihpc.2006.09.001.![]() ![]() ![]() |