-
Previous Article
Uniform stability of the Cucker–Smale and thermodynamic Cucker–Smale ensembles with singular kernels
- NHM Home
- This Issue
-
Next Article
Gradient flow formulation of diffusion equations in the Wasserstein space over a Metric graph
Martingale solutions of stochastic nonlocal cross-diffusion systems
1. | Institut de Mathématiques de Bordeaux UMR CNRS 525, Université de Bordeaux, F-33076 Bordeaux Cedex, France |
2. | Department of Mathematics, University of Oslo, P.O. Box 1053, Blindern, N–0316 Oslo, Norway |
We establish the existence of solutions for a class of stochastic reaction-diffusion systems with cross-diffusion terms modeling interspecific competition between two populations. More precisely, we prove the existence of weak martingale solutions employing appropriate Faedo-Galerkin approximations and the stochastic compactness method. The nonnegativity of solutions is proved by a stochastic adaptation of the well-known Stampacchia approach.
References:
[1] |
B. Ainseba, M. Bendahmane and A. Noussair,
A reaction-diffusion system modeling predator-prey with prey-taxis, Nonlinear Anal. Real World Appl., 9 (2008), 2086-2105.
doi: 10.1016/j.nonrwa.2007.06.017. |
[2] |
V. Anaya, M. Bendahmane, M. Langlais and M. Sepúlveda,
A convergent finite volume method for a model of indirectly transmitted diseases with nonlocal cross-diffusion, Comput. Math. Appl., 70 (2015), 132-157.
doi: 10.1016/j.camwa.2015.04.021. |
[3] |
V. Anaya, M. Bendahmane, M. Langlais and M. Sepúlveda, Pattern formation for a reaction diffusion system with constant and cross diffusion, In Numerical Mathematics and Advanced Applications—ENUMATH 2013, 103 (2015), 153–161. |
[4] |
V. Anaya, M. Bendahmane, M. Langlais and M. Sepúlveda,
Remarks about spatially structured SI model systems with cross diffusion, Contributions to Partial Differential Equations and Applications, 47 (2019), 43-64.
|
[5] |
M. Bendahmane,
Analysis of a reaction-diffusion system modeling predator-prey with prey-taxis, Netw. Heterog. Media, 3 (2008), 863-879.
doi: 10.3934/nhm.2008.3.863. |
[6] |
M. Bendahmane, K. H. Karlsen and J. M. Urbano, On a two-sidedly degenerate chemotaxis model with volume-filling effect, Math. Methods Appl. Sci., 17 (2007), 783–804.
doi: 10.1142/S0218202507002108. |
[7] |
M. Bendahmane, T. Lepoutre, A. Marrocco and B. Perthame,
Conservative cross diffusions and pattern formation through relaxation, J. Math. Pures Appl., 92 (2009), 651-667.
doi: 10.1016/j.matpur.2009.05.003. |
[8] |
A. Bensoussan,
Stochastic Navier-Stokes equations, Acta Appl. Math., 38 (1995), 267-304.
doi: 10.1007/BF00996149. |
[9] |
H. Bessaih,
Martingale solutions for stochastic Euler equations, Stochastic Anal. Appl., 17 (1999), 713-725.
doi: 10.1080/07362999908809631. |
[10] |
M. D. Chekroun, E. Park and R. Temam,
The Stampacchia maximum principle for stochastic partial differential equations and applications, J. Differential Equations, 260 (2016), 2926-2972.
doi: 10.1016/j.jde.2015.10.022. |
[11] |
G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, 2$^{nd}$ edition, Cambridge University Press, Cambridge, 2014.
doi: 10.1017/CBO9781107295513.![]() ![]() ![]() |
[12] |
A. Debussche, N. Glatt-Holtz and R. Temam,
Local martingale and pathwise solutions for an abstract fluids model, Phys. D, 240 (2011), 1123-1144.
doi: 10.1016/j.physd.2011.03.009. |
[13] |
A. Debussche, M. Hofmanová and J. Vovelle,
Degenerate parabolic stochastic partial differential equations: Quasilinear case, Ann. Probab., 44 (2016), 1916-1955.
doi: 10.1214/15-AOP1013. |
[14] |
G. Dhariwal, A. Jüngel and N. Zamponi,
Global martingale solutions for a stochastic population cross-diffusion system, Stochastic Process. Appl., 129 (2019), 3792-3820.
doi: 10.1016/j.spa.2018.11.001. |
[15] |
F. Flandoli, An introduction to 3D stochastic fluid dynamics,, In SPDE in Hydrodynamic: Recent Progress and Prospects, 1942 (2008), 51–150.
doi: 10.1007/978-3-540-78493-7_2. |
[16] |
F. Flandoli and D. Gatarek,
Martingale and stationary solutions for stochastic Navier-Stokes equations, Probab. Theory Related Fields, 102 (1995), 367-391.
doi: 10.1007/BF01192467. |
[17] |
G. Galiano, M. L. Garzón and A. Jüngel,
Analysis and numerical solution of a nonlinear cross-diffusion system arising in population dynamics, RACSAM. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. AMat., 95 (2001), 281-295.
|
[18] |
G. Galiano, M. L. Garzón and A. Jüngel,
Semi-discretization in time and numerical convergence of solutions of a nonlinear cross-diffusion population model, Numer. Math., 93 (2003), 655-673.
doi: 10.1007/s002110200406. |
[19] |
H. Garcke and K. Lam,
Global weak solutions and asymptotic limits of a cahn–hilliard–darcy system modelling tumour growth, AIMS Math., 1 (2016), 318-360.
|
[20] |
N. Glatt-Holtz, R. Temam and C. Wang,
Martingale and pathwise solutions to the stochastic Zakharov-Kuznetsov equation with multiplicative noise, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 1047-1085.
doi: 10.3934/dcdsb.2014.19.1047. |
[21] |
E. Hausenblas, P. A. Razafimandimby and M. Sango,
Martingale solution to equations for differential type fluids of grade two driven by random force of Lévy type, Potential Anal., 38 (2013), 1291-1331.
doi: 10.1007/s11118-012-9316-7. |
[22] |
M. Hofmanová,
Degenerate parabolic stochastic partial differential equations, Stochastic Process. Appl., 123 (2013), 4294-4336.
doi: 10.1016/j.spa.2013.06.015. |
[23] |
G. Leoni, A First Course in Sobolev Spaces, 2$^{nd}$ edition, American Mathematical Society, Providence, RI, second edition, 2017.
doi: 10.1090/gsm/181. |
[24] |
S. A. Levin,
A more functional response to predator-prey stability, The American Naturalist, 111 (1977), 381-383.
|
[25] |
S. A. Levin and L. A. Segel,
Hypothesis for origin of planktonic patchiness, Nature, 259 (1976), 659-659.
|
[26] |
M. Mimura and K. Kawasaki,
Spatial segregation in competitive interaction-diffusion equations, J. Math. Biol., 9 (1980), 49-64.
doi: 10.1007/BF00276035. |
[27] |
M. Mimura and J. D. Murray,
On a diffusive prey-predator model which exhibits patchiness, J. Theoret. Biol., 75 (1978), 249-262.
doi: 10.1016/0022-5193(78)90332-6. |
[28] |
M. Mimura and M. Yamaguti,
Pattern formation in interacting and diffusing systems in population biology, Advances in Biophysics, 15 (1982), 19-65.
|
[29] |
J. D. Murray, Mathematical Biology. I, 3$^{rd}$ edition, Interdisciplinary Applied Mathematics, 17. Springer-Verlag, New York, 2002. |
[30] |
J. D. Murray, Mathematical Biology. II, 3$^{rd}$ edition, Interdisciplinary Applied Mathematics, 18. Springer-Verlag, New York, 2003. |
[31] |
A. Okubo and S. A. Levin., Diffusion and Ecological Problems: Modern Perspectives, 2$^{nd}$ edtion, Interdisciplinary Applied Mathematics, 14. Springer-Verlag, New York, 2001.
doi: 10.1007/978-1-4757-4978-6. |
[32] |
M. Ondreját,
Stochastic nonlinear wave equations in local Sobolev spaces, Electron. J. Probab., 15 (2010), 1041-1091.
doi: 10.1214/EJP.v15-789. |
[33] |
C. Prévôt and M. Röckner, A concise Course on Stochastic Partial Differential Equations, Springer, Berlin, 2007. |
[34] |
P. A. Razafimandimby and M. Sango,
Existence and large time behavior for a stochastic model of modified magnetohydrodynamic equations, Z. Angew. Math. Phys., 66 (2015), 2197-2235.
doi: 10.1007/s00033-015-0534-x. |
[35] |
M. Sango,
Density dependent stochastic Navier-Stokes equations with non-Lipschitz random forcing, Rev. Math. Phys., 22 (2010), 669-697.
doi: 10.1142/S0129055X10004041. |
[36] |
J. Simon,
Compact sets in the space $L^ p(0, T;B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.
doi: 10.1007/BF01762360. |
show all references
References:
[1] |
B. Ainseba, M. Bendahmane and A. Noussair,
A reaction-diffusion system modeling predator-prey with prey-taxis, Nonlinear Anal. Real World Appl., 9 (2008), 2086-2105.
doi: 10.1016/j.nonrwa.2007.06.017. |
[2] |
V. Anaya, M. Bendahmane, M. Langlais and M. Sepúlveda,
A convergent finite volume method for a model of indirectly transmitted diseases with nonlocal cross-diffusion, Comput. Math. Appl., 70 (2015), 132-157.
doi: 10.1016/j.camwa.2015.04.021. |
[3] |
V. Anaya, M. Bendahmane, M. Langlais and M. Sepúlveda, Pattern formation for a reaction diffusion system with constant and cross diffusion, In Numerical Mathematics and Advanced Applications—ENUMATH 2013, 103 (2015), 153–161. |
[4] |
V. Anaya, M. Bendahmane, M. Langlais and M. Sepúlveda,
Remarks about spatially structured SI model systems with cross diffusion, Contributions to Partial Differential Equations and Applications, 47 (2019), 43-64.
|
[5] |
M. Bendahmane,
Analysis of a reaction-diffusion system modeling predator-prey with prey-taxis, Netw. Heterog. Media, 3 (2008), 863-879.
doi: 10.3934/nhm.2008.3.863. |
[6] |
M. Bendahmane, K. H. Karlsen and J. M. Urbano, On a two-sidedly degenerate chemotaxis model with volume-filling effect, Math. Methods Appl. Sci., 17 (2007), 783–804.
doi: 10.1142/S0218202507002108. |
[7] |
M. Bendahmane, T. Lepoutre, A. Marrocco and B. Perthame,
Conservative cross diffusions and pattern formation through relaxation, J. Math. Pures Appl., 92 (2009), 651-667.
doi: 10.1016/j.matpur.2009.05.003. |
[8] |
A. Bensoussan,
Stochastic Navier-Stokes equations, Acta Appl. Math., 38 (1995), 267-304.
doi: 10.1007/BF00996149. |
[9] |
H. Bessaih,
Martingale solutions for stochastic Euler equations, Stochastic Anal. Appl., 17 (1999), 713-725.
doi: 10.1080/07362999908809631. |
[10] |
M. D. Chekroun, E. Park and R. Temam,
The Stampacchia maximum principle for stochastic partial differential equations and applications, J. Differential Equations, 260 (2016), 2926-2972.
doi: 10.1016/j.jde.2015.10.022. |
[11] |
G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, 2$^{nd}$ edition, Cambridge University Press, Cambridge, 2014.
doi: 10.1017/CBO9781107295513.![]() ![]() ![]() |
[12] |
A. Debussche, N. Glatt-Holtz and R. Temam,
Local martingale and pathwise solutions for an abstract fluids model, Phys. D, 240 (2011), 1123-1144.
doi: 10.1016/j.physd.2011.03.009. |
[13] |
A. Debussche, M. Hofmanová and J. Vovelle,
Degenerate parabolic stochastic partial differential equations: Quasilinear case, Ann. Probab., 44 (2016), 1916-1955.
doi: 10.1214/15-AOP1013. |
[14] |
G. Dhariwal, A. Jüngel and N. Zamponi,
Global martingale solutions for a stochastic population cross-diffusion system, Stochastic Process. Appl., 129 (2019), 3792-3820.
doi: 10.1016/j.spa.2018.11.001. |
[15] |
F. Flandoli, An introduction to 3D stochastic fluid dynamics,, In SPDE in Hydrodynamic: Recent Progress and Prospects, 1942 (2008), 51–150.
doi: 10.1007/978-3-540-78493-7_2. |
[16] |
F. Flandoli and D. Gatarek,
Martingale and stationary solutions for stochastic Navier-Stokes equations, Probab. Theory Related Fields, 102 (1995), 367-391.
doi: 10.1007/BF01192467. |
[17] |
G. Galiano, M. L. Garzón and A. Jüngel,
Analysis and numerical solution of a nonlinear cross-diffusion system arising in population dynamics, RACSAM. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. AMat., 95 (2001), 281-295.
|
[18] |
G. Galiano, M. L. Garzón and A. Jüngel,
Semi-discretization in time and numerical convergence of solutions of a nonlinear cross-diffusion population model, Numer. Math., 93 (2003), 655-673.
doi: 10.1007/s002110200406. |
[19] |
H. Garcke and K. Lam,
Global weak solutions and asymptotic limits of a cahn–hilliard–darcy system modelling tumour growth, AIMS Math., 1 (2016), 318-360.
|
[20] |
N. Glatt-Holtz, R. Temam and C. Wang,
Martingale and pathwise solutions to the stochastic Zakharov-Kuznetsov equation with multiplicative noise, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 1047-1085.
doi: 10.3934/dcdsb.2014.19.1047. |
[21] |
E. Hausenblas, P. A. Razafimandimby and M. Sango,
Martingale solution to equations for differential type fluids of grade two driven by random force of Lévy type, Potential Anal., 38 (2013), 1291-1331.
doi: 10.1007/s11118-012-9316-7. |
[22] |
M. Hofmanová,
Degenerate parabolic stochastic partial differential equations, Stochastic Process. Appl., 123 (2013), 4294-4336.
doi: 10.1016/j.spa.2013.06.015. |
[23] |
G. Leoni, A First Course in Sobolev Spaces, 2$^{nd}$ edition, American Mathematical Society, Providence, RI, second edition, 2017.
doi: 10.1090/gsm/181. |
[24] |
S. A. Levin,
A more functional response to predator-prey stability, The American Naturalist, 111 (1977), 381-383.
|
[25] |
S. A. Levin and L. A. Segel,
Hypothesis for origin of planktonic patchiness, Nature, 259 (1976), 659-659.
|
[26] |
M. Mimura and K. Kawasaki,
Spatial segregation in competitive interaction-diffusion equations, J. Math. Biol., 9 (1980), 49-64.
doi: 10.1007/BF00276035. |
[27] |
M. Mimura and J. D. Murray,
On a diffusive prey-predator model which exhibits patchiness, J. Theoret. Biol., 75 (1978), 249-262.
doi: 10.1016/0022-5193(78)90332-6. |
[28] |
M. Mimura and M. Yamaguti,
Pattern formation in interacting and diffusing systems in population biology, Advances in Biophysics, 15 (1982), 19-65.
|
[29] |
J. D. Murray, Mathematical Biology. I, 3$^{rd}$ edition, Interdisciplinary Applied Mathematics, 17. Springer-Verlag, New York, 2002. |
[30] |
J. D. Murray, Mathematical Biology. II, 3$^{rd}$ edition, Interdisciplinary Applied Mathematics, 18. Springer-Verlag, New York, 2003. |
[31] |
A. Okubo and S. A. Levin., Diffusion and Ecological Problems: Modern Perspectives, 2$^{nd}$ edtion, Interdisciplinary Applied Mathematics, 14. Springer-Verlag, New York, 2001.
doi: 10.1007/978-1-4757-4978-6. |
[32] |
M. Ondreját,
Stochastic nonlinear wave equations in local Sobolev spaces, Electron. J. Probab., 15 (2010), 1041-1091.
doi: 10.1214/EJP.v15-789. |
[33] |
C. Prévôt and M. Röckner, A concise Course on Stochastic Partial Differential Equations, Springer, Berlin, 2007. |
[34] |
P. A. Razafimandimby and M. Sango,
Existence and large time behavior for a stochastic model of modified magnetohydrodynamic equations, Z. Angew. Math. Phys., 66 (2015), 2197-2235.
doi: 10.1007/s00033-015-0534-x. |
[35] |
M. Sango,
Density dependent stochastic Navier-Stokes equations with non-Lipschitz random forcing, Rev. Math. Phys., 22 (2010), 669-697.
doi: 10.1142/S0129055X10004041. |
[36] |
J. Simon,
Compact sets in the space $L^ p(0, T;B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.
doi: 10.1007/BF01762360. |
[1] |
Yuan Lou, Wei-Ming Ni, Yaping Wu. On the global existence of a cross-diffusion system. Discrete and Continuous Dynamical Systems, 1998, 4 (2) : 193-203. doi: 10.3934/dcds.1998.4.193 |
[2] |
Yi Li, Chunshan Zhao. Global existence of solutions to a cross-diffusion system in higher dimensional domains. Discrete and Continuous Dynamical Systems, 2005, 12 (2) : 185-192. doi: 10.3934/dcds.2005.12.185 |
[3] |
Zhaoyang Qiu, Yixuan Wang. Martingale solution for stochastic active liquid crystal system. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2227-2268. doi: 10.3934/dcds.2020360 |
[4] |
Yaru Hu, Jinfeng Wang. Dynamics of an SIRS epidemic model with cross-diffusion. Communications on Pure and Applied Analysis, 2022, 21 (1) : 315-336. doi: 10.3934/cpaa.2021179 |
[5] |
Yuan Lou, Wei-Ming Ni, Shoji Yotsutani. Pattern formation in a cross-diffusion system. Discrete and Continuous Dynamical Systems, 2015, 35 (4) : 1589-1607. doi: 10.3934/dcds.2015.35.1589 |
[6] |
Kousuke Kuto, Yoshio Yamada. On limit systems for some population models with cross-diffusion. Discrete and Continuous Dynamical Systems - B, 2012, 17 (8) : 2745-2769. doi: 10.3934/dcdsb.2012.17.2745 |
[7] |
Esther S. Daus, Josipa-Pina Milišić, Nicola Zamponi. Global existence for a two-phase flow model with cross-diffusion. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 957-979. doi: 10.3934/dcdsb.2019198 |
[8] |
Hongfei Xu, Jinfeng Wang, Xuelian Xu. Dynamics and pattern formation in a cross-diffusion model with stage structure for predators. Discrete and Continuous Dynamical Systems - B, 2022, 27 (8) : 4473-4489. doi: 10.3934/dcdsb.2021237 |
[9] |
Hirofumi Izuhara, Shunsuke Kobayashi. Spatio-temporal coexistence in the cross-diffusion competition system. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 919-933. doi: 10.3934/dcdss.2020228 |
[10] |
Yuan Lou, Wei-Ming Ni, Shoji Yotsutani. On a limiting system in the Lotka--Volterra competition with cross-diffusion. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 435-458. doi: 10.3934/dcds.2004.10.435 |
[11] |
Yanxia Wu, Yaping Wu. Existence of traveling waves with transition layers for some degenerate cross-diffusion systems. Communications on Pure and Applied Analysis, 2012, 11 (3) : 911-934. doi: 10.3934/cpaa.2012.11.911 |
[12] |
Y. S. Choi, Roger Lui, Yoshio Yamada. Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with strongly coupled cross-diffusion. Discrete and Continuous Dynamical Systems, 2004, 10 (3) : 719-730. doi: 10.3934/dcds.2004.10.719 |
[13] |
Y. S. Choi, Roger Lui, Yoshio Yamada. Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with weak cross-diffusion. Discrete and Continuous Dynamical Systems, 2003, 9 (5) : 1193-1200. doi: 10.3934/dcds.2003.9.1193 |
[14] |
Yaping Wu, Qian Xu. The existence and structure of large spiky steady states for S-K-T competition systems with cross-diffusion. Discrete and Continuous Dynamical Systems, 2011, 29 (1) : 367-385. doi: 10.3934/dcds.2011.29.367 |
[15] |
Robert Stephen Cantrell, Xinru Cao, King-Yeung Lam, Tian Xiang. A PDE model of intraguild predation with cross-diffusion. Discrete and Continuous Dynamical Systems - B, 2017, 22 (10) : 3653-3661. doi: 10.3934/dcdsb.2017145 |
[16] |
Michael Winkler, Dariusz Wrzosek. Preface: Analysis of cross-diffusion systems. Discrete and Continuous Dynamical Systems - S, 2020, 13 (2) : i-i. doi: 10.3934/dcdss.20202i |
[17] |
Maxime Breden, Christian Kuehn, Cinzia Soresina. On the influence of cross-diffusion in pattern formation. Journal of Computational Dynamics, 2021, 8 (2) : 213-240. doi: 10.3934/jcd.2021010 |
[18] |
Salomé Martínez, Wei-Ming Ni. Periodic solutions for a 3x 3 competitive system with cross-diffusion. Discrete and Continuous Dynamical Systems, 2006, 15 (3) : 725-746. doi: 10.3934/dcds.2006.15.725 |
[19] |
Yukio Kan-On. On the limiting system in the Shigesada, Kawasaki and Teramoto model with large cross-diffusion rates. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3561-3570. doi: 10.3934/dcds.2020161 |
[20] |
Willian Cintra, Carlos Alberto dos Santos, Jiazheng Zhou. Coexistence states of a Holling type II predator-prey system with self and cross-diffusion terms. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3913-3931. doi: 10.3934/dcdsb.2021211 |
2021 Impact Factor: 1.41
Tools
Metrics
Other articles
by authors
[Back to Top]