• Previous Article
    Dispersion in flows with obstacles and uncertainty
  • PROC Home
  • This Issue
  • Next Article
    Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature
2001, 2001(Special): 121-130. doi: 10.3934/proc.2001.2001.121

Fourier-Galerkin method for localized solutions of the Sixth-Order Generalized Boussinesq Equation

1. 

Department Of Mathematics, University Of Louisiana At Layette, Layette, La 70504-1010, United States

2. 

Department of Mathematics, University of Louisiana at Lafayette, Lafayette, LA 70504-1010, United States

Published  November 2013

Please refer to Full Text.
Citation: M. A. Christou, C. I. Christov. Fourier-Galerkin method for localized solutions of the Sixth-Order Generalized Boussinesq Equation. Conference Publications, 2001, 2001 (Special) : 121-130. doi: 10.3934/proc.2001.2001.121
[1]

Akmel Dé Godefroy. Existence, decay and blow-up for solutions to the sixth-order generalized Boussinesq equation. Discrete & Continuous Dynamical Systems, 2015, 35 (1) : 117-137. doi: 10.3934/dcds.2015.35.117

[2]

Huan Zhang, Jun Zhou. Asymptotic behaviors of solutions to a sixth-order Boussinesq equation with logarithmic nonlinearity. Communications on Pure & Applied Analysis, 2021, 20 (4) : 1601-1631. doi: 10.3934/cpaa.2021034

[3]

Jinxing Liu, Xiongrui Wang, Jun Zhou, Huan Zhang. Blow-up phenomena for the sixth-order Boussinesq equation with fourth-order dispersion term and nonlinear source. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021108

[4]

Brahim Alouini. Asymptotic behaviour of the solutions for a weakly damped anisotropic sixth-order Schrödinger type equation in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021032

[5]

Shenghao Li, Min Chen, Bing-Yu Zhang. A non-homogeneous boundary value problem of the sixth order Boussinesq equation in a quarter plane. Discrete & Continuous Dynamical Systems, 2018, 38 (5) : 2505-2525. doi: 10.3934/dcds.2018104

[6]

Khaled El Dika. Smoothing effect of the generalized BBM equation for localized solutions moving to the right. Discrete & Continuous Dynamical Systems, 2005, 12 (5) : 973-982. doi: 10.3934/dcds.2005.12.973

[7]

Zeyu Xia, Xiaofeng Yang. A second order accuracy in time, Fourier pseudo-spectral numerical scheme for "Good" Boussinesq equation. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3749-3763. doi: 10.3934/dcdsb.2020089

[8]

Changchun Liu, Zhao Wang. Time periodic solutions for a sixth order nonlinear parabolic equation in two space dimensions. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1087-1104. doi: 10.3934/cpaa.2014.13.1087

[9]

Kaitai Li, Yanren Hou. Fourier nonlinear Galerkin method for Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 1996, 2 (4) : 497-524. doi: 10.3934/dcds.1996.2.497

[10]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (9) : 4907-4926. doi: 10.3934/dcdsb.2020319

[11]

Luiz Gustavo Farah. Local solutions in Sobolev spaces and unconditional well-posedness for the generalized Boussinesq equation. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1521-1539. doi: 10.3934/cpaa.2009.8.1521

[12]

Yanling Shi, Junxiang Xu, Xindong Xu. Quasi-periodic solutions of generalized Boussinesq equation with quasi-periodic forcing. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2501-2519. doi: 10.3934/dcdsb.2017104

[13]

Miao Liu, Weike Wang. Global existence and pointwise estimates of solutions for the multidimensional generalized Boussinesq-type equation. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1203-1222. doi: 10.3934/cpaa.2014.13.1203

[14]

Shaoyong Lai, Yong Hong Wu. The asymptotic solution of the Cauchy problem for a generalized Boussinesq equation. Discrete & Continuous Dynamical Systems - B, 2003, 3 (3) : 401-408. doi: 10.3934/dcdsb.2003.3.401

[15]

Yonggeun Cho, Tohru Ozawa. On small amplitude solutions to the generalized Boussinesq equations. Discrete & Continuous Dynamical Systems, 2007, 17 (4) : 691-711. doi: 10.3934/dcds.2007.17.691

[16]

Vassilis Rothos. Subharmonic bifurcations of localized solutions of a discrete NLS equation. Conference Publications, 2005, 2005 (Special) : 756-767. doi: 10.3934/proc.2005.2005.756

[17]

Xiao-Yu Zhang, Qing Fang. A sixth order numerical method for a class of nonlinear two-point boundary value problems. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 31-43. doi: 10.3934/naco.2012.2.31

[18]

Axel Grünrock, Sebastian Herr. The Fourier restriction norm method for the Zakharov-Kuznetsov equation. Discrete & Continuous Dynamical Systems, 2014, 34 (5) : 2061-2068. doi: 10.3934/dcds.2014.34.2061

[19]

Aibo Liu, Changchun Liu. Cauchy problem for a sixth order Cahn-Hilliard type equation with inertial term. Evolution Equations & Control Theory, 2015, 4 (3) : 315-324. doi: 10.3934/eect.2015.4.315

[20]

Irena Pawłow, Wojciech M. Zajączkowski. A sixth order Cahn-Hilliard type equation arising in oil-water-surfactant mixtures. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1823-1847. doi: 10.3934/cpaa.2011.10.1823

 Impact Factor: 

Metrics

  • PDF downloads (27)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]