2001, 2001(Special): 248-253. doi: 10.3934/proc.2001.2001.248

Impulsive effects on the existence of solutions for a fast diffusion equation

1. 

Department of Applied Mathematics, Tatung University, 40 ChungShan North Road, Sec.3, Taipei, Taiwan 104, R.O.C., Taiwan

Published  November 2013

Please refer to Full Text.
Citation: H. T. Liu. Impulsive effects on the existence of solutions for a fast diffusion equation. Conference Publications, 2001, 2001 (Special) : 248-253. doi: 10.3934/proc.2001.2001.248
[1]

Marek Fila, Hannes Stuke. Special asymptotics for a critical fast diffusion equation. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 725-735. doi: 10.3934/dcdss.2014.7.725

[2]

Marek Fila, Michael Winkler. Sharp rate of convergence to Barenblatt profiles for a critical fast diffusion equation. Communications on Pure & Applied Analysis, 2015, 14 (1) : 107-119. doi: 10.3934/cpaa.2015.14.107

[3]

Shu-Yu Hsu. Super fast vanishing solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems, 2020, 40 (9) : 5383-5414. doi: 10.3934/dcds.2020232

[4]

Chunlai Mu, Jun Zhou, Yuhuan Li. Fast rate of dead core for fast diffusion equation with strong absorption. Communications on Pure & Applied Analysis, 2010, 9 (2) : 397-411. doi: 10.3934/cpaa.2010.9.397

[5]

Marek Fila, Juan-Luis Vázquez, Michael Winkler. A continuum of extinction rates for the fast diffusion equation. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1129-1147. doi: 10.3934/cpaa.2011.10.1129

[6]

Kin Ming Hui, Sunghoon Kim. Existence of Neumann and singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems, 2015, 35 (10) : 4859-4887. doi: 10.3934/dcds.2015.35.4859

[7]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[8]

Kin Ming Hui, Jinwan Park. Asymptotic behaviour of singular solution of the fast diffusion equation in the punctured euclidean space. Discrete & Continuous Dynamical Systems, 2021, 41 (11) : 5473-5508. doi: 10.3934/dcds.2021085

[9]

Feliz Minhós, Rui Carapinha. On higher order nonlinear impulsive boundary value problems. Conference Publications, 2015, 2015 (special) : 851-860. doi: 10.3934/proc.2015.0851

[10]

Nikos I. Kavallaris, Andrew A. Lacey, Christos V. Nikolopoulos, Dimitrios E. Tzanetis. On the quenching behaviour of a semilinear wave equation modelling MEMS technology. Discrete & Continuous Dynamical Systems, 2015, 35 (3) : 1009-1037. doi: 10.3934/dcds.2015.35.1009

[11]

Mikaela Iacobelli. Asymptotic analysis for a very fast diffusion equation arising from the 1D quantization problem. Discrete & Continuous Dynamical Systems, 2019, 39 (9) : 4929-4943. doi: 10.3934/dcds.2019201

[12]

Haili Qiao, Aijie Cheng. A fast high order method for time fractional diffusion equation with non-smooth data. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021073

[13]

Ning-An Lai, Yi Zhou. Blow up for initial boundary value problem of critical semilinear wave equation in two space dimensions. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1499-1510. doi: 10.3934/cpaa.2018072

[14]

Zhousheng Ruan, Sen Zhang, Sican Xiong. Solving an inverse source problem for a time fractional diffusion equation by a modified quasi-boundary value method. Evolution Equations & Control Theory, 2018, 7 (4) : 669-682. doi: 10.3934/eect.2018032

[15]

Felipe Wallison Chaves-Silva, Sergio Guerrero, Jean Pierre Puel. Controllability of fast diffusion coupled parabolic systems. Mathematical Control & Related Fields, 2014, 4 (4) : 465-479. doi: 10.3934/mcrf.2014.4.465

[16]

Yun-Gang Chen, Yoshikazu Giga, Koh Sato. On instant extinction for very fast diffusion equations. Discrete & Continuous Dynamical Systems, 1997, 3 (2) : 243-250. doi: 10.3934/dcds.1997.3.243

[17]

Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405

[18]

Massimiliano Berti, Philippe Bolle. Fast Arnold diffusion in systems with three time scales. Discrete & Continuous Dynamical Systems, 2002, 8 (3) : 795-811. doi: 10.3934/dcds.2002.8.795

[19]

Marcel Freitag. The fast signal diffusion limit in nonlinear chemotaxis systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1109-1128. doi: 10.3934/dcdsb.2019211

[20]

Yinbin Deng, Yi Li, Xiujuan Yan. Nodal solutions for a quasilinear Schrödinger equation with critical nonlinearity and non-square diffusion. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2487-2508. doi: 10.3934/cpaa.2015.14.2487

 Impact Factor: 

Metrics

  • PDF downloads (35)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]