• Previous Article
    Non-turning Poincaré map and homoclinic tangencies in interval maps with non-constant topological entropy
  • PROC Home
  • This Issue
  • Next Article
    Smoothing effect for generalized complex Ginzburg-Landau equations in unbounded domains
2001, 2001(Special): 289-294. doi: 10.3934/proc.2001.2001.289

Compressible flow on manifolds

1. 

Depertment of Mathematics and Department of Physics, Yeshiva University, New York. New York, 10033, United States

Published  November 2013

Please refer to Full Text.
Citation: Thomas H. Otway. Compressible flow on manifolds. Conference Publications, 2001, 2001 (Special) : 289-294. doi: 10.3934/proc.2001.2001.289
[1]

Tai-Ping Liu, Zhouping Xin, Tong Yang. Vacuum states for compressible flow. Discrete and Continuous Dynamical Systems, 1998, 4 (1) : 1-32. doi: 10.3934/dcds.1998.4.1

[2]

Michael Renardy. Backward uniqueness for linearized compressible flow. Evolution Equations and Control Theory, 2015, 4 (1) : 107-113. doi: 10.3934/eect.2015.4.107

[3]

Young-Pil Choi. Compressible Euler equations interacting with incompressible flow. Kinetic and Related Models, 2015, 8 (2) : 335-358. doi: 10.3934/krm.2015.8.335

[4]

Shuxing Chen, Gui-Qiang Chen, Zejun Wang, Dehua Wang. A multidimensional piston problem for the Euler equations for compressible flow. Discrete and Continuous Dynamical Systems, 2005, 13 (2) : 361-383. doi: 10.3934/dcds.2005.13.361

[5]

Tong Tang, Yongfu Wang. Strong solutions to compressible barotropic viscoelastic flow with vacuum. Kinetic and Related Models, 2015, 8 (4) : 765-775. doi: 10.3934/krm.2015.8.765

[6]

Xian-Gao Liu, Jie Qing. Globally weak solutions to the flow of compressible liquid crystals system. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 757-788. doi: 10.3934/dcds.2013.33.757

[7]

Anna Kaźmierczak, Jan Sokolowski, Antoni Zochowski. Drag minimization for the obstacle in compressible flow using shape derivatives and finite volumes. Mathematical Control and Related Fields, 2018, 8 (1) : 89-115. doi: 10.3934/mcrf.2018004

[8]

Qiang Tao, Ying Yang. Exponential stability for the compressible nematic liquid crystal flow with large initial data. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1661-1669. doi: 10.3934/cpaa.2016007

[9]

Sili Liu, Xinhua Zhao, Yingshan Chen. A new blowup criterion for strong solutions of the compressible nematic liquid crystal flow. Discrete and Continuous Dynamical Systems - B, 2020, 25 (11) : 4515-4533. doi: 10.3934/dcdsb.2020110

[10]

Shijin Ding, Changyou Wang, Huanyao Wen. Weak solution to compressible hydrodynamic flow of liquid crystals in dimension one. Discrete and Continuous Dynamical Systems - B, 2011, 15 (2) : 357-371. doi: 10.3934/dcdsb.2011.15.357

[11]

Shijin Ding, Junyu Lin, Changyou Wang, Huanyao Wen. Compressible hydrodynamic flow of liquid crystals in 1-D. Discrete and Continuous Dynamical Systems, 2012, 32 (2) : 539-563. doi: 10.3934/dcds.2012.32.539

[12]

Volker W. Elling. Shock polars for non-polytropic compressible potential flow. Communications on Pure and Applied Analysis, 2022, 21 (5) : 1581-1594. doi: 10.3934/cpaa.2022032

[13]

Takayuki Kubo, Yoshihiro Shibata, Kohei Soga. On some two phase problem for compressible and compressible viscous fluid flow separated by sharp interface. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3741-3774. doi: 10.3934/dcds.2016.36.3741

[14]

Feng Luo. A combinatorial curvature flow for compact 3-manifolds with boundary. Electronic Research Announcements, 2005, 11: 12-20.

[15]

Dubi Kelmer, Hee Oh. Shrinking targets for the geodesic flow on geometrically finite hyperbolic manifolds. Journal of Modern Dynamics, 2021, 17: 401-434. doi: 10.3934/jmd.2021014

[16]

Ling-Bing He, Li Xu. On the compressible Navier-Stokes equations in the whole space: From non-isentropic flow to isentropic flow. Discrete and Continuous Dynamical Systems, 2021, 41 (7) : 3489-3530. doi: 10.3934/dcds.2021005

[17]

Shifeng Geng, Zhen Wang. Best asymptotic profile for the system of compressible adiabatic flow through porous media on quadrant. Communications on Pure and Applied Analysis, 2012, 11 (2) : 475-500. doi: 10.3934/cpaa.2012.11.475

[18]

Yangyang Qiao, Huanyao Wen, Steinar Evje. Compressible and viscous two-phase flow in porous media based on mixture theory formulation. Networks and Heterogeneous Media, 2019, 14 (3) : 489-536. doi: 10.3934/nhm.2019020

[19]

Brahim Amaziane, Leonid Pankratov, Andrey Piatnitski. An improved homogenization result for immiscible compressible two-phase flow in porous media. Networks and Heterogeneous Media, 2017, 12 (1) : 147-171. doi: 10.3934/nhm.2017006

[20]

Bilal Saad, Mazen Saad. Numerical analysis of a non equilibrium two-component two-compressible flow in porous media. Discrete and Continuous Dynamical Systems - S, 2014, 7 (2) : 317-346. doi: 10.3934/dcdss.2014.7.317

 Impact Factor: 

Metrics

  • PDF downloads (47)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]