2001, 2001(Special): 310-318. doi: 10.3934/proc.2001.2001.310

The radially vibrating spherical quantum billiard

1. 

Center for Applied Mathematics and Schools of Electrical Engineering and Applied Physica, Cornell University, Ithaca, NY 14850, United States

2. 

Center for Applied Mathematics and Schools of Electrical Engineering and Applied Physics, Cornell University, Ithaca, NY 14850, United States

Published  November 2013

Please refer to Full Text.
Citation: Mason A. Porter, Richard L. Liboff. The radially vibrating spherical quantum billiard. Conference Publications, 2001, 2001 (Special) : 310-318. doi: 10.3934/proc.2001.2001.310
[1]

Sen Zhang, Guo Zhou, Yongquan Zhou, Qifang Luo. Quantum-inspired satin bowerbird algorithm with Bloch spherical search for constrained structural optimization. Journal of Industrial & Management Optimization, 2021, 17 (6) : 3509-3523. doi: 10.3934/jimo.2020130

[2]

Nicolas Bedaride. Entropy of polyhedral billiard. Discrete & Continuous Dynamical Systems, 2007, 19 (1) : 89-102. doi: 10.3934/dcds.2007.19.89

[3]

Pavel Bachurin, Konstantin Khanin, Jens Marklof, Alexander Plakhov. Perfect retroreflectors and billiard dynamics. Journal of Modern Dynamics, 2011, 5 (1) : 33-48. doi: 10.3934/jmd.2011.5.33

[4]

Quanyi Liang, Kairong Liu, Gang Meng, Zhikun She. Minimization of the lowest eigenvalue for a vibrating beam. Discrete & Continuous Dynamical Systems, 2018, 38 (4) : 2079-2092. doi: 10.3934/dcds.2018085

[5]

Julián López-Gómez. Uniqueness of radially symmetric large solutions. Conference Publications, 2007, 2007 (Special) : 677-686. doi: 10.3934/proc.2007.2007.677

[6]

David Cowan. A billiard model for a gas of particles with rotation. Discrete & Continuous Dynamical Systems, 2008, 22 (1&2) : 101-109. doi: 10.3934/dcds.2008.22.101

[7]

David Cowan. Rigid particle systems and their billiard models. Discrete & Continuous Dynamical Systems, 2008, 22 (1&2) : 111-130. doi: 10.3934/dcds.2008.22.111

[8]

Jamel Ben Amara, Emna Beldi. Simultaneous controllability of two vibrating strings with variable coefficients. Evolution Equations & Control Theory, 2019, 8 (4) : 687-694. doi: 10.3934/eect.2019032

[9]

Alexander Khapalov. Controllability properties of a vibrating string with variable axial load. Discrete & Continuous Dynamical Systems, 2004, 11 (2&3) : 311-324. doi: 10.3934/dcds.2004.11.311

[10]

Stan Chiriţă. Spatial behavior in the vibrating thermoviscoelastic porous materials. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2027-2038. doi: 10.3934/dcdsb.2014.19.2027

[11]

Martin Gugat, Mario Sigalotti. Stars of vibrating strings: Switching boundary feedback stabilization. Networks & Heterogeneous Media, 2010, 5 (2) : 299-314. doi: 10.3934/nhm.2010.5.299

[12]

Alexander Barg, Oleg R. Musin. Codes in spherical caps. Advances in Mathematics of Communications, 2007, 1 (1) : 131-149. doi: 10.3934/amc.2007.1.131

[13]

Thomas I. Vogel. Comments on radially symmetric liquid bridges with inflected profiles. Conference Publications, 2005, 2005 (Special) : 862-867. doi: 10.3934/proc.2005.2005.862

[14]

Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228

[15]

Alexey Glutsyuk, Yury Kudryashov. No planar billiard possesses an open set of quadrilateral trajectories. Journal of Modern Dynamics, 2012, 6 (3) : 287-326. doi: 10.3934/jmd.2012.6.287

[16]

Jianlu Zhang. Suspension of the billiard maps in the Lazutkin's coordinate. Discrete & Continuous Dynamical Systems, 2017, 37 (4) : 2227-2242. doi: 10.3934/dcds.2017096

[17]

Yang Shen, Jiazhong Yang. Hearing the shape of right triangle billiard tables. Discrete & Continuous Dynamical Systems, 2021, 41 (12) : 5537-5549. doi: 10.3934/dcds.2021087

[18]

Helmut Kröger. From quantum action to quantum chaos. Conference Publications, 2003, 2003 (Special) : 492-500. doi: 10.3934/proc.2003.2003.492

[19]

Alberto Ibort, Alberto López-Yela. Quantum tomography and the quantum Radon transform. Inverse Problems & Imaging, 2021, 15 (5) : 893-928. doi: 10.3934/ipi.2021021

[20]

Aravind Asok, James Parson. Equivariant sheaves on some spherical varieties. Electronic Research Announcements, 2011, 18: 119-130. doi: 10.3934/era.2011.18.119

 Impact Factor: 

Metrics

  • PDF downloads (26)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]