2001, 2001(Special): 319-326. doi: 10.3934/proc.2001.2001.319

Poiseuille flow of nanofluids confined in slit nanopores

1. 

Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey, United Kingdom, GU2 5XH, United Kingdom

Published  November 2013

Please refer to Full Text.
Citation: Liudmila A. Pozhar. Poiseuille flow of nanofluids confined in slit nanopores. Conference Publications, 2001, 2001 (Special) : 319-326. doi: 10.3934/proc.2001.2001.319
[1]

Igor Chueshov, Tamara Fastovska. On interaction of circular cylindrical shells with a Poiseuille type flow. Evolution Equations and Control Theory, 2016, 5 (4) : 605-629. doi: 10.3934/eect.2016021

[2]

Mohamed Tij, Andrés Santos. Non-Newtonian Couette-Poiseuille flow of a dilute gas. Kinetic and Related Models, 2011, 4 (1) : 361-384. doi: 10.3934/krm.2011.4.361

[3]

Ilyas Khan, Muhammad Saqib, Aisha M. Alqahtani. Channel flow of fractionalized H2O-based CNTs nanofluids with Newtonian heating. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 769-779. doi: 10.3934/dcdss.2020043

[4]

Hong Zhou, M. Gregory Forest. Anchoring distortions coupled with plane Couette & Poiseuille flows of nematic polymers in viscous solvents: Morphology in molecular orientation, stress & flow. Discrete and Continuous Dynamical Systems - B, 2006, 6 (2) : 407-425. doi: 10.3934/dcdsb.2006.6.407

[5]

Hassib Selmi, Lassaad Elasmi, Giovanni Ghigliotti, Chaouqi Misbah. Boundary integral and fast multipole method for two dimensional vesicle sets in Poiseuille flow. Discrete and Continuous Dynamical Systems - B, 2011, 15 (4) : 1065-1076. doi: 10.3934/dcdsb.2011.15.1065

[6]

Pooja Girotra, Jyoti Ahuja, Dinesh Verma. Analysis of Rayleigh Taylor instability in nanofluids with rotation. Numerical Algebra, Control and Optimization, 2022, 12 (3) : 495-512. doi: 10.3934/naco.2021018

[7]

Alessandro Fonda, Andrea Sfecci. Multiple periodic solutions of Hamiltonian systems confined in a box. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1425-1436. doi: 10.3934/dcds.2017059

[8]

Lyudmila Grigoryeva, Juan-Pablo Ortega, Stanislav S. Zub. Stability of Hamiltonian relative equilibria in symmetric magnetically confined rigid bodies. Journal of Geometric Mechanics, 2014, 6 (3) : 373-415. doi: 10.3934/jgm.2014.6.373

[9]

Jörg Weber. Confined steady states of the relativistic Vlasov–Maxwell system in an infinitely long cylinder. Kinetic and Related Models, 2020, 13 (6) : 1135-1161. doi: 10.3934/krm.2020040

[10]

Yulia O. Belyaeva, Björn Gebhard, Alexander L. Skubachevskii. A general way to confined stationary Vlasov-Poisson plasma configurations. Kinetic and Related Models, 2021, 14 (2) : 257-282. doi: 10.3934/krm.2021004

[11]

Silvia Caprino, Guido Cavallaro, Carlo Marchioro. A Vlasov-Poisson plasma with unbounded mass and velocities confined in a cylinder by a magnetic mirror. Kinetic and Related Models, 2016, 9 (4) : 657-686. doi: 10.3934/krm.2016011

[12]

Clément Jourdana, Paola Pietra. A quantum Drift-Diffusion model and its use into a hybrid strategy for strongly confined nanostructures. Kinetic and Related Models, 2019, 12 (1) : 217-242. doi: 10.3934/krm.2019010

[13]

Thomas Hudson. Gamma-expansion for a 1D confined Lennard-Jones model with point defect. Networks and Heterogeneous Media, 2013, 8 (2) : 501-527. doi: 10.3934/nhm.2013.8.501

[14]

Radu C. Cascaval, Ciro D'Apice, Maria Pia D'Arienzo, Rosanna Manzo. Flow optimization in vascular networks. Mathematical Biosciences & Engineering, 2017, 14 (3) : 607-624. doi: 10.3934/mbe.2017035

[15]

Edoardo Mainini. On the signed porous medium flow. Networks and Heterogeneous Media, 2012, 7 (3) : 525-541. doi: 10.3934/nhm.2012.7.525

[16]

Mapundi K. Banda, Michael Herty, Axel Klar. Gas flow in pipeline networks. Networks and Heterogeneous Media, 2006, 1 (1) : 41-56. doi: 10.3934/nhm.2006.1.41

[17]

Magnus Aspenberg, Fredrik Ekström, Tomas Persson, Jörg Schmeling. On the asymptotics of the scenery flow. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 2797-2815. doi: 10.3934/dcds.2015.35.2797

[18]

Tai-Ping Liu, Zhouping Xin, Tong Yang. Vacuum states for compressible flow. Discrete and Continuous Dynamical Systems, 1998, 4 (1) : 1-32. doi: 10.3934/dcds.1998.4.1

[19]

Tracy L. Payne. The Ricci flow for nilmanifolds. Journal of Modern Dynamics, 2010, 4 (1) : 65-90. doi: 10.3934/jmd.2010.4.65

[20]

Thomas H. Otway. Compressible flow on manifolds. Conference Publications, 2001, 2001 (Special) : 289-294. doi: 10.3934/proc.2001.2001.289

 Impact Factor: 

Metrics

  • PDF downloads (50)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]