2003, 2003(Special): 133-140. doi: 10.3934/proc.2003.2003.133

Numerical approximation of normally hyperbolic invariant manifolds

1. 

Department of Mathematics, University of Groningen, PO Box 407, 9700 AK, Groningen, Netherlands

2. 

Department of Mathematics, University of Texas, Arlington, TX 76019, United States

3. 

Department of Mathematics and Computing Science, University of Groningen, Netherlands

Received  June 2002 Revised  March 2003 Published  April 2003

This paper deals with the numerical continuation of invariant manifolds, regardless of the restricted dynamics. Typically, invariant manifolds make up the skeleton of the dynamics of phase space. Examples include limit sets, co-dimension 1 manifolds separating basins of attraction (separatrices), stable/unstable/center manifolds, nested hierarchies of attracting manifolds in dissipative systems and manifolds in phase plus parameter space on which bifurcations occur. These manifolds are for the most part invisible to current numerical methods. The approach is based on the general principle of normal hyperbolicity, where the graph transform leads to the numerical algorithms. This gives a highly multiple purpose method. The key issue is the discretization of the differential geometric components of the graph transform, and its consequences. Examples of computations will be given, with and without non-uniform adaptive refinement.
Citation: Henk Broer, Aaron Hagen, Gert Vegter. Numerical approximation of normally hyperbolic invariant manifolds. Conference Publications, 2003, 2003 (Special) : 133-140. doi: 10.3934/proc.2003.2003.133
[1]

Miguel Ángel Evangelista-Alvarado, José Crispín Ruíz-Pantaleón, Pablo Suárez-Serrato. On computational Poisson geometry II: Numerical methods. Journal of Computational Dynamics, 2021, 8 (3) : 273-307. doi: 10.3934/jcd.2021012

[2]

Marcin Mazur, Jacek Tabor. Computational hyperbolicity. Discrete & Continuous Dynamical Systems, 2011, 29 (3) : 1175-1189. doi: 10.3934/dcds.2011.29.1175

[3]

J. B. van den Berg, J. D. Mireles James. Parameterization of slow-stable manifolds and their invariant vector bundles: Theory and numerical implementation. Discrete & Continuous Dynamical Systems, 2016, 36 (9) : 4637-4664. doi: 10.3934/dcds.2016002

[4]

Annalisa Iuorio, Christian Kuehn, Peter Szmolyan. Geometry and numerical continuation of multiscale orbits in a nonconvex variational problem. Discrete & Continuous Dynamical Systems - S, 2020, 13 (4) : 1269-1290. doi: 10.3934/dcdss.2020073

[5]

M. D. König, Stefano Battiston, M. Napoletano, F. Schweitzer. On algebraic graph theory and the dynamics of innovation networks. Networks & Heterogeneous Media, 2008, 3 (2) : 201-219. doi: 10.3934/nhm.2008.3.201

[6]

Pablo Aguirre, Bernd Krauskopf, Hinke M. Osinga. Global invariant manifolds near a Shilnikov homoclinic bifurcation. Journal of Computational Dynamics, 2014, 1 (1) : 1-38. doi: 10.3934/jcd.2014.1.1

[7]

Paweł Lubowiecki, Henryk Żołądek. The Hess-Appelrot system. I. Invariant torus and its normal hyperbolicity. Journal of Geometric Mechanics, 2012, 4 (4) : 443-467. doi: 10.3934/jgm.2012.4.443

[8]

Michael Hochman. Lectures on dynamics, fractal geometry, and metric number theory. Journal of Modern Dynamics, 2014, 8 (3&4) : 437-497. doi: 10.3934/jmd.2014.8.437

[9]

Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 0: 331-348. doi: 10.3934/jmd.2020012

[10]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[11]

Miguel Ángel Evangelista-Alvarado, José Crispín Ruíz-Pantaleón, Pablo Suárez-Serrato. On computational Poisson geometry I: Symbolic foundations. Journal of Geometric Mechanics, 2021, 13 (4) : 607-628. doi: 10.3934/jgm.2021018

[12]

Emile Franc Doungmo Goufo, Melusi Khumalo, Patrick M. Tchepmo Djomegni. Perturbations of Hindmarsh-Rose neuron dynamics by fractional operators: Bifurcation, firing and chaotic bursts. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 663-682. doi: 10.3934/dcdss.2020036

[13]

Anastasiia Panchuk, Frank Westerhoff. Speculative behavior and chaotic asset price dynamics: On the emergence of a bandcount accretion bifurcation structure. Discrete & Continuous Dynamical Systems - B, 2021, 26 (11) : 5941-5964. doi: 10.3934/dcdsb.2021117

[14]

Mazyar Ghani Varzaneh, Sebastian Riedel. A dynamical theory for singular stochastic delay differential equations Ⅱ: nonlinear equations and invariant manifolds. Discrete & Continuous Dynamical Systems - B, 2021, 26 (8) : 4587-4612. doi: 10.3934/dcdsb.2020304

[15]

Luis Barreira, Claudia Valls. Regularity of center manifolds under nonuniform hyperbolicity. Discrete & Continuous Dynamical Systems, 2011, 30 (1) : 55-76. doi: 10.3934/dcds.2011.30.55

[16]

Rovella Alvaro, Vilamajó Francesc, Romero Neptalí. Invariant manifolds for delay endomorphisms. Discrete & Continuous Dynamical Systems, 2001, 7 (1) : 35-50. doi: 10.3934/dcds.2001.7.35

[17]

Jean-Philippe Lessard, Evelyn Sander, Thomas Wanner. Rigorous continuation of bifurcation points in the diblock copolymer equation. Journal of Computational Dynamics, 2017, 4 (1&2) : 71-118. doi: 10.3934/jcd.2017003

[18]

Jan Boman. Unique continuation of microlocally analytic distributions and injectivity theorems for the ray transform. Inverse Problems & Imaging, 2010, 4 (4) : 619-630. doi: 10.3934/ipi.2010.4.619

[19]

Yakov Pesin, Vaughn Climenhaga. Open problems in the theory of non-uniform hyperbolicity. Discrete & Continuous Dynamical Systems, 2010, 27 (2) : 589-607. doi: 10.3934/dcds.2010.27.589

[20]

Janina Kotus, Mariusz Urbański. The dynamics and geometry of the Fatou functions. Discrete & Continuous Dynamical Systems, 2005, 13 (2) : 291-338. doi: 10.3934/dcds.2005.13.291

 Impact Factor: 

Metrics

  • PDF downloads (34)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]