-
Previous Article
A global semi-Lagrangian spectral model for the reformulated shallow water equations
- PROC Home
- This Issue
-
Next Article
A nonlinear controlled system of differential equations describing the process of production and sales of a consumer good
Modified Chebyshev rational spectral method for the whole line
1. | Department of Mathematics, Shanghai Normal University, Shanghai, China |
2. | Institute of Applied Physics and Computational Mathematics, Bejing, China |
[1] |
Shou-Fu Tian. Initial-boundary value problems for the coupled modified Korteweg-de Vries equation on the interval. Communications on Pure and Applied Analysis, 2018, 17 (3) : 923-957. doi: 10.3934/cpaa.2018046 |
[2] |
Rusuo Ye, Yi Zhang. Initial-boundary value problems for the two-component complex modified Korteweg-de Vries equation on the interval. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022111 |
[3] |
Eduardo Cerpa. Control of a Korteweg-de Vries equation: A tutorial. Mathematical Control and Related Fields, 2014, 4 (1) : 45-99. doi: 10.3934/mcrf.2014.4.45 |
[4] |
M. Agrotis, S. Lafortune, P.G. Kevrekidis. On a discrete version of the Korteweg-De Vries equation. Conference Publications, 2005, 2005 (Special) : 22-29. doi: 10.3934/proc.2005.2005.22 |
[5] |
Guolian Wang, Boling Guo. Stochastic Korteweg-de Vries equation driven by fractional Brownian motion. Discrete and Continuous Dynamical Systems, 2015, 35 (11) : 5255-5272. doi: 10.3934/dcds.2015.35.5255 |
[6] |
Zhaosheng Feng, Yu Huang. Approximate solution of the Burgers-Korteweg-de Vries equation. Communications on Pure and Applied Analysis, 2007, 6 (2) : 429-440. doi: 10.3934/cpaa.2007.6.429 |
[7] |
Muhammad Usman, Bing-Yu Zhang. Forced oscillations of the Korteweg-de Vries equation on a bounded domain and their stability. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1509-1523. doi: 10.3934/dcds.2010.26.1509 |
[8] |
Eduardo Cerpa, Emmanuelle Crépeau. Rapid exponential stabilization for a linear Korteweg-de Vries equation. Discrete and Continuous Dynamical Systems - B, 2009, 11 (3) : 655-668. doi: 10.3934/dcdsb.2009.11.655 |
[9] |
Pierre Garnier. Damping to prevent the blow-up of the korteweg-de vries equation. Communications on Pure and Applied Analysis, 2017, 16 (4) : 1455-1470. doi: 10.3934/cpaa.2017069 |
[10] |
Massimiliano Gubinelli. Rough solutions for the periodic Korteweg--de~Vries equation. Communications on Pure and Applied Analysis, 2012, 11 (2) : 709-733. doi: 10.3934/cpaa.2012.11.709 |
[11] |
Ahmat Mahamat Taboye, Mohamed Laabissi. Exponential stabilization of a linear Korteweg-de Vries equation with input saturation. Evolution Equations and Control Theory, 2021 doi: 10.3934/eect.2021052 |
[12] |
Terence Tao. Two remarks on the generalised Korteweg de-Vries equation. Discrete and Continuous Dynamical Systems, 2007, 18 (1) : 1-14. doi: 10.3934/dcds.2007.18.1 |
[13] |
Boling Guo, Zhaohui Huo. The global attractor of the damped, forced generalized Korteweg de Vries-Benjamin-Ono equation in $L^2$. Discrete and Continuous Dynamical Systems, 2006, 16 (1) : 121-136. doi: 10.3934/dcds.2006.16.121 |
[14] |
Eduardo Cerpa, Emmanuelle Crépeau, Julie Valein. Boundary controllability of the Korteweg-de Vries equation on a tree-shaped network. Evolution Equations and Control Theory, 2020, 9 (3) : 673-692. doi: 10.3934/eect.2020028 |
[15] |
Ludovick Gagnon. Qualitative description of the particle trajectories for the N-solitons solution of the Korteweg-de Vries equation. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1489-1507. doi: 10.3934/dcds.2017061 |
[16] |
Mudassar Imran, Youssef Raffoul, Muhammad Usman, Chi Zhang. A study of bifurcation parameters in travelling wave solutions of a damped forced Korteweg de Vries-Kuramoto Sivashinsky type equation. Discrete and Continuous Dynamical Systems - S, 2018, 11 (4) : 691-705. doi: 10.3934/dcdss.2018043 |
[17] |
Arnaud Debussche, Jacques Printems. Convergence of a semi-discrete scheme for the stochastic Korteweg-de Vries equation. Discrete and Continuous Dynamical Systems - B, 2006, 6 (4) : 761-781. doi: 10.3934/dcdsb.2006.6.761 |
[18] |
Roberto A. Capistrano-Filho, Shuming Sun, Bing-Yu Zhang. General boundary value problems of the Korteweg-de Vries equation on a bounded domain. Mathematical Control and Related Fields, 2018, 8 (3&4) : 583-605. doi: 10.3934/mcrf.2018024 |
[19] |
Qifan Li. Local well-posedness for the periodic Korteweg-de Vries equation in analytic Gevrey classes. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1097-1109. doi: 10.3934/cpaa.2012.11.1097 |
[20] |
Anne de Bouard, Eric Gautier. Exit problems related to the persistence of solitons for the Korteweg-de Vries equation with small noise. Discrete and Continuous Dynamical Systems, 2010, 26 (3) : 857-871. doi: 10.3934/dcds.2010.26.857 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]