2003, 2003(Special): 439-448. doi: 10.3934/proc.2003.2003.439

Strong solutions of magneto-micropolar fluid equation

1. 

Ashikaga Institute of Technology, 268-1 Omae Ashikaga, Tochigi, 326-8558

2. 

Advanced Research Institute for Science and Engineering, Waseda University, Tokyo, 169-8555

3. 

Department of Applied Physics, Waseda University, 3-4-1, Okubo, Tokyo, 169-8555, Japan

Received  September 2002 Published  April 2003

We show the existence and uniqueness of a strong solution for the system of magneto-micropolar fluid motions under some assumptions on the regularity of given data similar to those of Fujita-Kato [4]. The method of our proof relies on the abstract nonmonotone perturbation theory developed in ˆ Otani [10].
Citation: Hiroshi Inoue, Kei Matsuura, Mitsuharu Ôtani. Strong solutions of magneto-micropolar fluid equation. Conference Publications, 2003, 2003 (Special) : 439-448. doi: 10.3934/proc.2003.2003.439
[1]

Kazuo Yamazaki. Large deviation principle for the micropolar, magneto-micropolar fluid systems. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 913-938. doi: 10.3934/dcdsb.2018048

[2]

Jens Lorenz, Wilberclay G. Melo, Suelen C. P. de Souza. Regularity criteria for weak solutions of the Magneto-micropolar equations. Electronic Research Archive, 2021, 29 (1) : 1625-1639. doi: 10.3934/era.2020083

[3]

Cung The Anh, Vu Manh Toi. Local exact controllability to trajectories of the magneto-micropolar fluid equations. Evolution Equations and Control Theory, 2017, 6 (3) : 357-379. doi: 10.3934/eect.2017019

[4]

Xin Zhong. Singularity formation to the nonhomogeneous magneto-micropolar fluid equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6339-6357. doi: 10.3934/dcdsb.2021021

[5]

Kazuo Yamazaki. Global regularity of the two-dimensional magneto-micropolar fluid system with zero angular viscosity. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 2193-2207. doi: 10.3934/dcds.2015.35.2193

[6]

Jinbo Geng, Xiaochun Chen, Sadek Gala. On regularity criteria for the 3D magneto-micropolar fluid equations in the critical Morrey-Campanato space. Communications on Pure and Applied Analysis, 2011, 10 (2) : 583-592. doi: 10.3934/cpaa.2011.10.583

[7]

Tong Tang, Jianzhu Sun. Local well-posedness for the density-dependent incompressible magneto-micropolar system with vacuum. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6017-6026. doi: 10.3934/dcdsb.2020377

[8]

Xin Zhong. Global well-posedness and exponential decay for 3D nonhomogeneous magneto-micropolar fluid equations with vacuum. Communications on Pure and Applied Analysis, 2022, 21 (2) : 493-515. doi: 10.3934/cpaa.2021185

[9]

Yang Liu, Nan Zhou, Renying Guo. Global solvability to the 3D incompressible magneto-micropolar system with vacuum. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022061

[10]

Xin Zhong. Global well-posedness to the nonhomogeneous magneto-micropolar fluid equations with large initial data and vacuum. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022102

[11]

Charles Amorim, Miguel Loayza, Marko A. Rojas-Medar. The nonstationary flows of micropolar fluids with thermal convection: An iterative approach. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2509-2535. doi: 10.3934/dcdsb.2020193

[12]

Lvqiao liu, Lan Zhang. Optimal decay to the non-isentropic compressible micropolar fluids. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4575-4598. doi: 10.3934/cpaa.2020207

[13]

Jens Lorenz, Wilberclay G. Melo, Natã Firmino Rocha. The Magneto–Hydrodynamic equations: Local theory and blow-up of solutions. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3819-3841. doi: 10.3934/dcdsb.2018332

[14]

Eduard Feireisl. Mathematical theory of viscous fluids: Retrospective and future perspectives. Discrete and Continuous Dynamical Systems, 2010, 27 (2) : 533-555. doi: 10.3934/dcds.2010.27.533

[15]

John Boyd. Strongly nonlinear perturbation theory for solitary waves and bions. Evolution Equations and Control Theory, 2019, 8 (1) : 1-29. doi: 10.3934/eect.2019001

[16]

Jingrui Su. Global existence and low Mach number limit to a 3D compressible micropolar fluids model in a bounded domain. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 3423-3434. doi: 10.3934/dcds.2017145

[17]

Zefu Feng, Changjiang Zhu. Global classical large solution to compressible viscous micropolar and heat-conducting fluids with vacuum. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3069-3097. doi: 10.3934/dcds.2019127

[18]

Matthias Hieber. Remarks on the theory of Oldroyd-B fluids in exterior domains. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1307-1313. doi: 10.3934/dcdss.2013.6.1307

[19]

Fabio Camilli, Annalisa Cesaroni. A note on singular perturbation problems via Aubry-Mather theory. Discrete and Continuous Dynamical Systems, 2007, 17 (4) : 807-819. doi: 10.3934/dcds.2007.17.807

[20]

Florian Dorsch, Hermann Schulz-Baldes. Random Möbius dynamics on the unit disc and perturbation theory for Lyapunov exponents. Discrete and Continuous Dynamical Systems - B, 2022, 27 (2) : 945-976. doi: 10.3934/dcdsb.2021076

 Impact Factor: 

Metrics

  • PDF downloads (85)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]