-
Previous Article
From quantum action to quantum chaos
- PROC Home
- This Issue
-
Next Article
Conservation laws and invariant solutions for soil water equations
Application of weak turbulence theory to FPU model
1. | Department of Mathematical Sciences, Rensselaer Polytechnic Institute, 301 Amos Eaton Hall, 110 8th Street, Troy, NY 12180, United States, United States |
[1] |
Simone Paleari, Tiziano Penati. Equipartition times in a Fermi-Pasta-Ulam system. Conference Publications, 2005, 2005 (Special) : 710-719. doi: 10.3934/proc.2005.2005.710 |
[2] |
Alexander Pankov, Vassilis M. Rothos. Traveling waves in Fermi-Pasta-Ulam lattices with saturable nonlinearities. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 835-849. doi: 10.3934/dcds.2011.30.835 |
[3] |
Antonio Giorgilli, Simone Paleari, Tiziano Penati. Local chaotic behaviour in the Fermi-Pasta-Ulam system. Discrete and Continuous Dynamical Systems - B, 2005, 5 (4) : 991-1004. doi: 10.3934/dcdsb.2005.5.991 |
[4] |
Alexander Pankov. Traveling waves in Fermi-Pasta-Ulam chains with nonlocal interaction. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 2097-2113. doi: 10.3934/dcdss.2019135 |
[5] |
Joachim Naumann, Jörg Wolf. On Prandtl's turbulence model: Existence of weak solutions to the equations of stationary turbulent pipe-flow. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1371-1390. doi: 10.3934/dcdss.2013.6.1371 |
[6] |
Jacopo De Simoi. Stability and instability results in a model of Fermi acceleration. Discrete and Continuous Dynamical Systems, 2009, 25 (3) : 719-750. doi: 10.3934/dcds.2009.25.719 |
[7] |
W. Layton, R. Lewandowski. On a well-posed turbulence model. Discrete and Continuous Dynamical Systems - B, 2006, 6 (1) : 111-128. doi: 10.3934/dcdsb.2006.6.111 |
[8] |
Alexey Cheskidov, Susan Friedlander, Nataša Pavlović. An inviscid dyadic model of turbulence: The global attractor. Discrete and Continuous Dynamical Systems, 2010, 26 (3) : 781-794. doi: 10.3934/dcds.2010.26.781 |
[9] |
Natalia Ptitsyna, Stephen P. Shipman. A lattice model for resonance in open periodic waveguides. Discrete and Continuous Dynamical Systems - S, 2012, 5 (5) : 989-1020. doi: 10.3934/dcdss.2012.5.989 |
[10] |
Tania Biswas, Sheetal Dharmatti. Control problems and invariant subspaces for sabra shell model of turbulence. Evolution Equations and Control Theory, 2018, 7 (3) : 417-445. doi: 10.3934/eect.2018021 |
[11] |
T. Gallouët, J.-C. Latché. Compactness of discrete approximate solutions to parabolic PDEs - Application to a turbulence model. Communications on Pure and Applied Analysis, 2012, 11 (6) : 2371-2391. doi: 10.3934/cpaa.2012.11.2371 |
[12] |
Reza Mazrooei-Sebdani, Zahra Yousefi. The coupled 1:2 resonance in a symmetric case and parametric amplification model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3737-3765. doi: 10.3934/dcdsb.2020255 |
[13] |
François Baccelli, Augustin Chaintreau, Danny De Vleeschauwer, David R. McDonald. HTTP turbulence. Networks and Heterogeneous Media, 2006, 1 (1) : 1-40. doi: 10.3934/nhm.2006.1.1 |
[14] |
Soizic Terrien, Christophe Vergez, Benoît Fabre, Patricio de la Cuadra. Emergence of quasiperiodic regimes in a neutral delay model of flute-like instruments: Influence of the detuning between resonance frequencies. Journal of Computational Dynamics, 2022 doi: 10.3934/jcd.2022011 |
[15] |
Luca Bisconti, Davide Catania. Global well-posedness of the two-dimensional horizontally filtered simplified Bardina turbulence model on a strip-like region. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1861-1881. doi: 10.3934/cpaa.2017090 |
[16] |
Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete and Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366 |
[17] |
Victor Zvyagin, Vladimir Orlov. Weak solvability of fractional Voigt model of viscoelasticity. Discrete and Continuous Dynamical Systems, 2018, 38 (12) : 6327-6350. doi: 10.3934/dcds.2018270 |
[18] |
Prasanta Kumar Barik, Ankik Kumar Giri. Weak solutions to the continuous coagulation model with collisional breakage. Discrete and Continuous Dynamical Systems, 2020, 40 (11) : 6115-6133. doi: 10.3934/dcds.2020272 |
[19] |
Gerhard Keller. Maximal equicontinuous generic factors and weak model sets. Discrete and Continuous Dynamical Systems, 2020, 40 (12) : 6855-6875. doi: 10.3934/dcds.2020132 |
[20] |
Eric Falcon. Laboratory experiments on wave turbulence. Discrete and Continuous Dynamical Systems - B, 2010, 13 (4) : 819-840. doi: 10.3934/dcdsb.2010.13.819 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]