2003, 2003(Special): 742-751. doi: 10.3934/proc.2003.2003.742

Minimization of the base transit time in semiconductor devices using optimal control

1. 

Dept. of Systems Science and Mathematics, Washington University, One Brookings Drive, St. Louis, MO 63130, United States

2. 

Dept. of Electrical and Systems Engineering, Washington University, St. Louis, Missouri, 63130-4899

Received  August 2002 Published  April 2003

We consider the problem of determining the optimal profile of doping concentration that minimizes the base transit time in homojunction bipolar transistors. This is a well-studied problem in the electronics literature, but typically only numerical optimization is used to find solutions. In this paper we give an explicit analytic solution to the problem using the Pontryagin Maximum Principle with state-space constraints and prove its optimality using synthesis type arguments.
Citation: Paolo Rinaldi, Heinz Schättler. Minimization of the base transit time in semiconductor devices using optimal control. Conference Publications, 2003, 2003 (Special) : 742-751. doi: 10.3934/proc.2003.2003.742
[1]

Heinz Schättler, Urszula Ledzewicz. Fields of extremals and sensitivity analysis for multi-input bilinear optimal control problems. Discrete & Continuous Dynamical Systems, 2015, 35 (9) : 4611-4638. doi: 10.3934/dcds.2015.35.4611

[2]

Louis Caccetta, Ian Loosen, Volker Rehbock. Computational aspects of the optimal transit path problem. Journal of Industrial & Management Optimization, 2008, 4 (1) : 95-105. doi: 10.3934/jimo.2008.4.95

[3]

María Barbero-Liñán, Miguel C. Muñoz-Lecanda. Strict abnormal extremals in nonholonomic and kinematic control systems. Discrete & Continuous Dynamical Systems - S, 2010, 3 (1) : 1-17. doi: 10.3934/dcdss.2010.3.1

[4]

Alain Bensoussan, Sonny Skaaning. Base stock list price policy in continuous time. Discrete & Continuous Dynamical Systems - B, 2017, 22 (1) : 1-28. doi: 10.3934/dcdsb.2017001

[5]

Changjun Yu, Shuxuan Su, Yanqin Bai. On the optimal control problems with characteristic time control constraints. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021021

[6]

Anibal T. Azevedo, Aurelio R. L. Oliveira, Marcos J. Rider, Secundino Soares. How to efficiently incorporate facts devices in optimal active power flow model. Journal of Industrial & Management Optimization, 2010, 6 (2) : 315-331. doi: 10.3934/jimo.2010.6.315

[7]

Pierluigi Colli, Gianni Gilardi, Gabriela Marinoschi, Elisabetta Rocca. Optimal control for a phase field system with a possibly singular potential. Mathematical Control & Related Fields, 2016, 6 (1) : 95-112. doi: 10.3934/mcrf.2016.6.95

[8]

Pierluigi Colli, Gianni Gilardi, Gabriela Marinoschi, Elisabetta Rocca. Optimal control for a conserved phase field system with a possibly singular potential. Evolution Equations & Control Theory, 2018, 7 (1) : 95-116. doi: 10.3934/eect.2018006

[9]

Bosheng Chen, Huilai Li, Changchun Liu. Optimal distributed control for a coupled phase-field system. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021110

[10]

Piermarco Cannarsa, Cristina Pignotti, Carlo Sinestrari. Semiconcavity for optimal control problems with exit time. Discrete & Continuous Dynamical Systems, 2000, 6 (4) : 975-997. doi: 10.3934/dcds.2000.6.975

[11]

Jérome Lohéac, Jean-François Scheid. Time optimal control for a nonholonomic system with state constraint. Mathematical Control & Related Fields, 2013, 3 (2) : 185-208. doi: 10.3934/mcrf.2013.3.185

[12]

Piermarco Cannarsa, Carlo Sinestrari. On a class of nonlinear time optimal control problems. Discrete & Continuous Dynamical Systems, 1995, 1 (2) : 285-300. doi: 10.3934/dcds.1995.1.285

[13]

Erik I. Verriest. Generalizations of Naismith's problem: Minimal transit time between two points in a heterogenous terrian. Conference Publications, 2011, 2011 (Special) : 1413-1422. doi: 10.3934/proc.2011.2011.1413

[14]

Jiongmin Yong. Time-inconsistent optimal control problems and the equilibrium HJB equation. Mathematical Control & Related Fields, 2012, 2 (3) : 271-329. doi: 10.3934/mcrf.2012.2.271

[15]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[16]

Zaidong Zhan, Shuping Chen, Wei Wei. A unified theory of maximum principle for continuous and discrete time optimal control problems. Mathematical Control & Related Fields, 2012, 2 (2) : 195-215. doi: 10.3934/mcrf.2012.2.195

[17]

Hongwei Lou, Junjie Wen, Yashan Xu. Time optimal control problems for some non-smooth systems. Mathematical Control & Related Fields, 2014, 4 (3) : 289-314. doi: 10.3934/mcrf.2014.4.289

[18]

Gastão S. F. Frederico, Delfim F. M. Torres. Noether's symmetry Theorem for variational and optimal control problems with time delay. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 619-630. doi: 10.3934/naco.2012.2.619

[19]

Laurenz Göllmann, Helmut Maurer. Theory and applications of optimal control problems with multiple time-delays. Journal of Industrial & Management Optimization, 2014, 10 (2) : 413-441. doi: 10.3934/jimo.2014.10.413

[20]

David González-Sánchez, Onésimo Hernández-Lerma. On the Euler equation approach to discrete--time nonstationary optimal control problems. Journal of Dynamics & Games, 2014, 1 (1) : 57-78. doi: 10.3934/jdg.2014.1.57

 Impact Factor: 

Metrics

  • PDF downloads (28)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]