# American Institute of Mathematical Sciences

2003, 2003(Special): 880-887. doi: 10.3934/proc.2003.2003.880

## The primitive equations formulated in mean vorticity

 1 Department of Mathematics, Indiana University, Bloomington, IN 47405-5701

Received  September 2002 Published  April 2003

The primitive equations (PEs) of large-scale oceanic flow formulated in mean vorticity is proposed. In the reformulation of the PEs, the prognostic equation for the horizontal velocity is replaced by evolutionary equations for the mean vorticity field and the vertical derivative of the horizontal velocity. The total velocity field (both horizontal and vertical) is statically determined by differential equations at each fixed horizontal point. Its equivalence to the original formulation is also presented.
Citation: Cheng Wang. The primitive equations formulated in mean vorticity. Conference Publications, 2003, 2003 (Special) : 880-887. doi: 10.3934/proc.2003.2003.880
 [1] Cheng Wang. Convergence analysis of the numerical method for the primitive equations formulated in mean vorticity on a Cartesian grid. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 1143-1172. doi: 10.3934/dcdsb.2004.4.1143 [2] Juan Li, Wenqiang Li. Controlled reflected mean-field backward stochastic differential equations coupled with value function and related PDEs. Mathematical Control & Related Fields, 2015, 5 (3) : 501-516. doi: 10.3934/mcrf.2015.5.501 [3] Silvia Sastre-Gomez. Equivalent formulations for steady periodic water waves of fixed mean-depth with discontinuous vorticity. Discrete & Continuous Dynamical Systems, 2017, 37 (5) : 2669-2680. doi: 10.3934/dcds.2017114 [4] Chang-Shou Lin. An expository survey on the recent development of mean field equations. Discrete & Continuous Dynamical Systems, 2007, 19 (2) : 387-410. doi: 10.3934/dcds.2007.19.387 [5] Pierre-Emmanuel Jabin. A review of the mean field limits for Vlasov equations. Kinetic & Related Models, 2014, 7 (4) : 661-711. doi: 10.3934/krm.2014.7.661 [6] Michael Herty, Lorenzo Pareschi, Sonja Steffensen. Mean--field control and Riccati equations. Networks & Heterogeneous Media, 2015, 10 (3) : 699-715. doi: 10.3934/nhm.2015.10.699 [7] Y. Goto, K. Ishii, T. Ogawa. Method of the distance function to the Bence-Merriman-Osher algorithm for motion by mean curvature. Communications on Pure & Applied Analysis, 2005, 4 (2) : 311-339. doi: 10.3934/cpaa.2005.4.311 [8] Yufeng Shi, Tianxiao Wang, Jiongmin Yong. Mean-field backward stochastic Volterra integral equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1929-1967. doi: 10.3934/dcdsb.2013.18.1929 [9] Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324 [10] Wei Wang, Kai Liu, Xiulian Wang. Sensitivity to small delays of mean square stability for stochastic neutral evolution equations. Communications on Pure & Applied Analysis, 2020, 19 (4) : 2403-2418. doi: 10.3934/cpaa.2020105 [11] Franco Flandoli, Marta Leocata, Cristiano Ricci. The Vlasov-Navier-Stokes equations as a mean field limit. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3741-3753. doi: 10.3934/dcdsb.2018313 [12] Zhen Li, Jicheng Liu. Synchronization for stochastic differential equations with nonlinear multiplicative noise in the mean square sense. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5709-5736. doi: 10.3934/dcdsb.2019103 [13] Jinju Xu. A new proof of gradient estimates for mean curvature equations with oblique boundary conditions. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1719-1742. doi: 10.3934/cpaa.2016010 [14] Hailong Zhu, Jifeng Chu, Weinian Zhang. Mean-square almost automorphic solutions for stochastic differential equations with hyperbolicity. Discrete & Continuous Dynamical Systems, 2018, 38 (4) : 1935-1953. doi: 10.3934/dcds.2018078 [15] Gabriella Tarantello. Analytical, geometrical and topological aspects of a class of mean field equations on surfaces. Discrete & Continuous Dynamical Systems, 2010, 28 (3) : 931-973. doi: 10.3934/dcds.2010.28.931 [16] Chiun-Chuan Chen, Chang-Shou Lin. Mean field equations of Liouville type with singular data: Sharper estimates. Discrete & Continuous Dynamical Systems, 2010, 28 (3) : 1237-1272. doi: 10.3934/dcds.2010.28.1237 [17] Yves Achdou, Mathieu Laurière. On the system of partial differential equations arising in mean field type control. Discrete & Continuous Dynamical Systems, 2015, 35 (9) : 3879-3900. doi: 10.3934/dcds.2015.35.3879 [18] Hongjie Dong, Xinghong Pan. On conormal derivative problem for parabolic equations with Dini mean oscillation coefficients. Discrete & Continuous Dynamical Systems, 2021, 41 (10) : 4567-4592. doi: 10.3934/dcds.2021049 [19] Liangliang Ma. Stability of hydrostatic equilibrium to the 2D fractional Boussinesq equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021068 [20] Hélène Hibon, Ying Hu, Yiqing Lin, Peng Luo, Falei Wang. Quadratic BSDEs with mean reflection. Mathematical Control & Related Fields, 2018, 8 (3&4) : 721-738. doi: 10.3934/mcrf.2018031

Impact Factor: