-
Previous Article
Valuing investment project in competitive environment
- PROC Home
- This Issue
-
Next Article
Multiple solutions of super-quadratic second order dynamical systems
Global attractors for non-autonomous multivalued dynamical systems associated with double obstacle problems
1. | Department of Mathematical Science, Common Subject Division, Muroran Institute of Technology, 27-1 Mizumoto-chō, Muroran |
[1] |
Shengda Zeng, Vicenţiu D. Rădulescu, Patrick Winkert. Double phase obstacle problems with multivalued convection and mixed boundary value conditions. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022109 |
[2] |
Rubén Caballero, Alexandre N. Carvalho, Pedro Marín-Rubio, José Valero. Robustness of dynamically gradient multivalued dynamical systems. Discrete and Continuous Dynamical Systems - B, 2019, 24 (3) : 1049-1077. doi: 10.3934/dcdsb.2019006 |
[3] |
María J. Garrido-Atienza, Oleksiy V. Kapustyan, José Valero. Preface to the special issue "Finite and infinite dimensional multivalued dynamical systems". Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : i-iv. doi: 10.3934/dcdsb.201705i |
[4] |
Bixiang Wang. Multivalued non-autonomous random dynamical systems for wave equations without uniqueness. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 2011-2051. doi: 10.3934/dcdsb.2017119 |
[5] |
Tomás Caraballo, David Cheban. On the structure of the global attractor for non-autonomous dynamical systems with weak convergence. Communications on Pure and Applied Analysis, 2012, 11 (2) : 809-828. doi: 10.3934/cpaa.2012.11.809 |
[6] |
Jacson Simsen, Mariza Stefanello Simsen. On asymptotically autonomous dynamics for multivalued evolution problems. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3557-3567. doi: 10.3934/dcdsb.2018278 |
[7] |
Alexandre N. Carvalho, José A. Langa, James C. Robinson. Forwards dynamics of non-autonomous dynamical systems: Driving semigroups without backwards uniqueness and structure of the attractor. Communications on Pure and Applied Analysis, 2020, 19 (4) : 1997-2013. doi: 10.3934/cpaa.2020088 |
[8] |
Tomás Caraballo, David Cheban. On the structure of the global attractor for infinite-dimensional non-autonomous dynamical systems with weak convergence. Communications on Pure and Applied Analysis, 2013, 12 (1) : 281-302. doi: 10.3934/cpaa.2013.12.281 |
[9] |
Luis Caffarelli, Antoine Mellet. Random homogenization of fractional obstacle problems. Networks and Heterogeneous Media, 2008, 3 (3) : 523-554. doi: 10.3934/nhm.2008.3.523 |
[10] |
Tan Bui-Thanh, Omar Ghattas. Analysis of the Hessian for inverse scattering problems. Part III: Inverse medium scattering of electromagnetic waves in three dimensions. Inverse Problems and Imaging, 2013, 7 (4) : 1139-1155. doi: 10.3934/ipi.2013.7.1139 |
[11] |
Sari Lasanen. Non-Gaussian statistical inverse problems. Part II: Posterior convergence for approximated unknowns. Inverse Problems and Imaging, 2012, 6 (2) : 267-287. doi: 10.3934/ipi.2012.6.267 |
[12] |
Tianxiao Wang. Characterizations of equilibrium controls in time inconsistent mean-field stochastic linear quadratic problems. I. Mathematical Control and Related Fields, 2019, 9 (2) : 385-409. doi: 10.3934/mcrf.2019018 |
[13] |
Sari Lasanen. Non-Gaussian statistical inverse problems. Part I: Posterior distributions. Inverse Problems and Imaging, 2012, 6 (2) : 215-266. doi: 10.3934/ipi.2012.6.215 |
[14] |
Nobuyuki Kenmochi, Noriaki Yamazaki. Global attractor of the multivalued semigroup associated with a phase-field model of grain boundary motion with constraint. Conference Publications, 2011, 2011 (Special) : 824-833. doi: 10.3934/proc.2011.2011.824 |
[15] |
Jacson Simsen, Mariza Stefanello Simsen, José Valero. Convergence of nonautonomous multivalued problems with large diffusion to ordinary differential inclusions. Communications on Pure and Applied Analysis, 2020, 19 (4) : 2347-2368. doi: 10.3934/cpaa.2020102 |
[16] |
Olexiy V. Kapustyan, Pavlo O. Kasyanov, José Valero, Mikhail Z. Zgurovsky. Attractors of multivalued semi-flows generated by solutions of optimal control problems. Discrete and Continuous Dynamical Systems - B, 2019, 24 (3) : 1229-1242. doi: 10.3934/dcdsb.2019013 |
[17] |
Francesca Papalini. Strongly nonlinear multivalued systems involving singular $\Phi$-Laplacian operators. Communications on Pure and Applied Analysis, 2010, 9 (4) : 1025-1040. doi: 10.3934/cpaa.2010.9.1025 |
[18] |
Raffaela Capitanelli, Salvatore Fragapane. Asymptotics for quasilinear obstacle problems in bad domains. Discrete and Continuous Dynamical Systems - S, 2019, 12 (1) : 43-56. doi: 10.3934/dcdss.2019003 |
[19] |
Frank Hettlich. The domain derivative for semilinear elliptic inverse obstacle problems. Inverse Problems and Imaging, 2022, 16 (4) : 691-702. doi: 10.3934/ipi.2021071 |
[20] |
Abd-semii Oluwatosin-Enitan Owolabi, Timilehin Opeyemi Alakoya, Adeolu Taiwo, Oluwatosin Temitope Mewomo. A new inertial-projection algorithm for approximating common solution of variational inequality and fixed point problems of multivalued mappings. Numerical Algebra, Control and Optimization, 2022, 12 (2) : 255-278. doi: 10.3934/naco.2021004 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]