2005, 2005(Special): 250-257. doi: 10.3934/proc.2005.2005.250

Periodic solutions in fading memory spaces


Department de Mathematiques, Faculte des Sciences Semlalia, B.P. 2390, Marrakech, Morocco


Department of Mathematics, James Madison University, Harrisonburg, VA 22807, United States


Department of Mathematics and Statistics, James Madison University, Harrisonburg, VA 22807, United States

Received  September 2004 Revised  March 2005 Published  September 2005

For $A(t)$ and $f(t,x,y)$ $T$-periodic in $t$, consider the following evolution equation with infinite delay in a general Banach space $X$, $$u^\prime (t)+ A(t)u(t)=f(t,u(t),u_t),\;\; t> 0,\;\;u(s) =\phi (s),\;\;s \leq 0, $$ where the resolvent of the unbounded operator $A(t)$ is compact, and $u_t (s)=u(t+s),\; s\leq 0$. We will work with general fading memory phase spaces satisfying certain axioms, and derive periodic solutions. We will show that the related Poincar\'{e} operator is condensing, and then derive periodic solutions using the boundedness of the solutions and some fixed point theorems. This way, the study of periodic solutions for equations with infinite delay in general Banach spaces can be carried to fading memory phase spaces. In doing so, we will improve a condition of [4] and extend the results of [7,8].
Citation: Khalil Ezzinbi, James H. Liu, Nguyen Van Minh. Periodic solutions in fading memory spaces. Conference Publications, 2005, 2005 (Special) : 250-257. doi: 10.3934/proc.2005.2005.250

Jin Liang, James H. Liu, Ti-Jun Xiao. Condensing operators and periodic solutions of infinite delay impulsive evolution equations. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 475-485. doi: 10.3934/dcdss.2017023


Paolo Perfetti. Fixed point theorems in the Arnol'd model about instability of the action-variables in phase-space. Discrete & Continuous Dynamical Systems, 1998, 4 (2) : 379-391. doi: 10.3934/dcds.1998.4.379


Shui-Hung Hou. On an application of fixed point theorem to nonlinear inclusions. Conference Publications, 2011, 2011 (Special) : 692-697. doi: 10.3934/proc.2011.2011.692


Zhihua Liu, Pierre Magal. Functional differential equation with infinite delay in a space of exponentially bounded and uniformly continuous functions. Discrete & Continuous Dynamical Systems - B, 2020, 25 (6) : 2271-2292. doi: 10.3934/dcdsb.2019227


Hernán R. Henríquez, Claudio Cuevas, Alejandro Caicedo. Asymptotically periodic solutions of neutral partial differential equations with infinite delay. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2031-2068. doi: 10.3934/cpaa.2013.12.2031


Evgeny L. Korotyaev. Estimates for solutions of KDV on the phase space of periodic distributions in terms of action variables. Discrete & Continuous Dynamical Systems, 2011, 30 (1) : 219-225. doi: 10.3934/dcds.2011.30.219


Romain Aimino, Huyi Hu, Matthew Nicol, Andrei Török, Sandro Vaienti. Polynomial loss of memory for maps of the interval with a neutral fixed point. Discrete & Continuous Dynamical Systems, 2015, 35 (3) : 793-806. doi: 10.3934/dcds.2015.35.793


Parin Chaipunya, Poom Kumam. Fixed point theorems for cyclic operators with application in Fractional integral inclusions with delays. Conference Publications, 2015, 2015 (special) : 248-257. doi: 10.3934/proc.2015.0248


Leonid Shaikhet. Stability of delay differential equations with fading stochastic perturbations of the type of white noise and poisson's jumps. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3651-3657. doi: 10.3934/dcdsb.2020077


Jianghao Hao, Junna Zhang. General stability of abstract thermoelastic system with infinite memory and delay. Mathematical Control & Related Fields, 2021, 11 (2) : 353-371. doi: 10.3934/mcrf.2020040


Ovide Arino, Eva Sánchez. A saddle point theorem for functional state-dependent delay differential equations. Discrete & Continuous Dynamical Systems, 2005, 12 (4) : 687-722. doi: 10.3934/dcds.2005.12.687


P. Chiranjeevi, V. Kannan, Sharan Gopal. Periodic points and periods for operators on hilbert space. Discrete & Continuous Dynamical Systems, 2013, 33 (9) : 4233-4237. doi: 10.3934/dcds.2013.33.4233


Juan Campos, Rafael Ortega. Location of fixed points and periodic solutions in the plane. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 517-523. doi: 10.3934/dcdsb.2008.9.517


Jeffrey W. Lyons. An application of an avery type fixed point theorem to a second order antiperiodic boundary value problem. Conference Publications, 2015, 2015 (special) : 775-782. doi: 10.3934/proc.2015.0775


Radjesvarane Alexandre, Yoshinori Morimoto, Seiji Ukai, Chao-Jiang Xu, Tong Yang. Bounded solutions of the Boltzmann equation in the whole space. Kinetic & Related Models, 2011, 4 (1) : 17-40. doi: 10.3934/krm.2011.4.17


Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (9) : 4927-4962. doi: 10.3934/dcdsb.2020320


Nicolas Lerner, Yoshinori Morimoto, Karel Pravda-Starov, Chao-Jiang Xu. Phase space analysis and functional calculus for the linearized Landau and Boltzmann operators. Kinetic & Related Models, 2013, 6 (3) : 625-648. doi: 10.3934/krm.2013.6.625


Gastão S. F. Frederico, Delfim F. M. Torres. Noether's symmetry Theorem for variational and optimal control problems with time delay. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 619-630. doi: 10.3934/naco.2012.2.619


Sergiu Aizicovici, Hana Petzeltová. Convergence to equilibria of solutions to a conserved Phase-Field system with memory. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 1-16. doi: 10.3934/dcdss.2009.2.1


Byung-Soo Lee. A convergence theorem of common fixed points of a countably infinite family of asymptotically quasi-$f_i$-expansive mappings in convex metric spaces. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 557-565. doi: 10.3934/naco.2013.3.557

 Impact Factor: 


  • PDF downloads (51)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]