• Previous Article
    A global semi-Lagrangian spectral model of shallow water equations with time-dependent variable resolution
  • PROC Home
  • This Issue
  • Next Article
    Multiple positive solutions to a three point third order boundary value problem
2005, 2005(Special): 345-354. doi: 10.3934/proc.2005.2005.345

Optimal control of a commercial loan repayment plan


Department of Mathematics and Computer Sciences, Texas Woman's University, Denton, TX 76204, United States


Department of Computer Mathematics and Cybernetics, Moscow State Lomonosov University, Moscow, 119992, Russian Federation

Received  September 2004 Revised  March 2005 Published  September 2005

We consider a controlled system of differential equations modeling a firm that takes a loan in order to expand its production activities. The objective is to determine the optimal loan repayment schedule using the variables of the business current profitability, the bank's interest rate on the loan and the cost of reinvestment of capital. The portion of the annual profit which a firm returns to the bank and the value of the total loan taken by the firm are control parameters. We consider a linear production function and investigate the attainable sets for the system analytically and numerically. Optimal control problems are stated and their solutions are found using attainable sets. Attainable sets for different values of the parameters of the system are constructed with the use of a computer program written in MAPLE. Possible economic applications are discussed.
Citation: Ellina Grigorieva, Evgenii Khailov. Optimal control of a commercial loan repayment plan. Conference Publications, 2005, 2005 (Special) : 345-354. doi: 10.3934/proc.2005.2005.345

Ellina Grigorieva, Evgenii Khailov, Andrei Korobeinikov. Parametrization of the attainable set for a nonlinear control model of a biochemical process. Mathematical Biosciences & Engineering, 2013, 10 (4) : 1067-1094. doi: 10.3934/mbe.2013.10.1067


Jonas Lampart. A remark on the attainable set of the Schrödinger equation. Evolution Equations and Control Theory, 2021, 10 (3) : 461-469. doi: 10.3934/eect.2020075


Mariko Arisawa, Hitoshi Ishii. Some properties of ergodic attractors for controlled dynamical systems. Discrete and Continuous Dynamical Systems, 1998, 4 (1) : 43-54. doi: 10.3934/dcds.1998.4.43


Sebastián Ferrer, Francisco Crespo. Parametric quartic Hamiltonian model. A unified treatment of classic integrable systems. Journal of Geometric Mechanics, 2014, 6 (4) : 479-502. doi: 10.3934/jgm.2014.6.479


Ghendrih Philippe, Hauray Maxime, Anne Nouri. Derivation of a gyrokinetic model. Existence and uniqueness of specific stationary solution. Kinetic and Related Models, 2009, 2 (4) : 707-725. doi: 10.3934/krm.2009.2.707


Shohel Ahmed, Abdul Alim, Sumaiya Rahman. A controlled treatment strategy applied to HIV immunology model. Numerical Algebra, Control and Optimization, 2018, 8 (3) : 299-314. doi: 10.3934/naco.2018019


Faker Ben Belgacem. Uniqueness for an ill-posed reaction-dispersion model. Application to organic pollution in stream-waters. Inverse Problems and Imaging, 2012, 6 (2) : 163-181. doi: 10.3934/ipi.2012.6.163


Mikhail I. Belishev, Sergey A. Simonov. A canonical model of the one-dimensional dynamical Dirac system with boundary control. Evolution Equations and Control Theory, 2022, 11 (1) : 283-300. doi: 10.3934/eect.2021003


Tan H. Cao, Boris S. Mordukhovich. Optimality conditions for a controlled sweeping process with applications to the crowd motion model. Discrete and Continuous Dynamical Systems - B, 2017, 22 (2) : 267-306. doi: 10.3934/dcdsb.2017014


Steinar Evje, Aksel Hiorth. A mathematical model for dynamic wettability alteration controlled by water-rock chemistry. Networks and Heterogeneous Media, 2010, 5 (2) : 217-256. doi: 10.3934/nhm.2010.5.217


Peter Benner, Tobias Breiten, Carsten Hartmann, Burkhard Schmidt. Model reduction of controlled Fokker–Planck and Liouville–von Neumann equations. Journal of Computational Dynamics, 2020, 7 (1) : 1-33. doi: 10.3934/jcd.2020001


Shivam Dhama, Chetan D. Pahlajani. Approximation of linear controlled dynamical systems with small random noise and fast periodic sampling. Mathematical Control and Related Fields, 2022  doi: 10.3934/mcrf.2022018


P.K. Newton. The dipole dynamical system. Conference Publications, 2005, 2005 (Special) : 692-699. doi: 10.3934/proc.2005.2005.692


Ellina Grigorieva, Evgenii Khailov. A nonlinear controlled system of differential equations describing the process of production and sales of a consumer good. Conference Publications, 2003, 2003 (Special) : 359-364. doi: 10.3934/proc.2003.2003.359


Dina Kalinichenko, Volker Reitmann, Sergey Skopinov. Asymptotic behavior of solutions to a coupled system of Maxwell's equations and a controlled differential inclusion. Conference Publications, 2013, 2013 (special) : 407-414. doi: 10.3934/proc.2013.2013.407


Stephen Thompson, Thomas I. Seidman. Approximation of a semigroup model of anomalous diffusion in a bounded set. Evolution Equations and Control Theory, 2013, 2 (1) : 173-192. doi: 10.3934/eect.2013.2.173


Sedighe Asghariniya, Hamed Zhiani Rezai, Saeid Mehrabian. Resource allocation: A common set of weights model. Numerical Algebra, Control and Optimization, 2020, 10 (3) : 257-273. doi: 10.3934/naco.2020001


Dorota Bors, Robert Stańczy. Dynamical system modeling fermionic limit. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 45-55. doi: 10.3934/dcdsb.2018004


Xiangnan He, Wenlian Lu, Tianping Chen. On transverse stability of random dynamical system. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 701-721. doi: 10.3934/dcds.2013.33.701


Jianfeng Feng, Mariya Shcherbina, Brunello Tirozzi. Dynamical behaviour of a large complex system. Communications on Pure and Applied Analysis, 2008, 7 (2) : 249-265. doi: 10.3934/cpaa.2008.7.249

 Impact Factor: 


  • PDF downloads (52)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]