-
Previous Article
Mean square approximation of multi dimensional reflecting fractional Brownian motion via penalty method
- PROC Home
- This Issue
-
Next Article
Existence of a stable set for some nonlinear parabolic equation involving critical Sobolev exponent
Nim-induced dynamical systems over Z2
1. | Montclair State University, Department of Mathematical Sciences, Upper Montclair, NJ 07043, United States |
2. | Department of Mathematical Sciences, Montclair State University, Upper Montclair, NJ 07043, United States |
[1] |
Igor E. Shparlinski. On some dynamical systems in finite fields and residue rings. Discrete and Continuous Dynamical Systems, 2007, 17 (4) : 901-917. doi: 10.3934/dcds.2007.17.901 |
[2] |
Jianjun Paul Tian. Finite-time perturbations of dynamical systems and applications to tumor therapy. Discrete and Continuous Dynamical Systems - B, 2009, 12 (2) : 469-479. doi: 10.3934/dcdsb.2009.12.469 |
[3] |
Xavier Cabré, Amadeu Delshams, Marian Gidea, Chongchun Zeng. Preface of Llavefest: A broad perspective on finite and infinite dimensional dynamical systems. Discrete and Continuous Dynamical Systems, 2018, 38 (12) : i-iii. doi: 10.3934/dcds.201812i |
[4] |
María J. Garrido-Atienza, Oleksiy V. Kapustyan, José Valero. Preface to the special issue "Finite and infinite dimensional multivalued dynamical systems". Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : i-iv. doi: 10.3934/dcdsb.201705i |
[5] |
Tianhu Yu, Jinde Cao, Chuangxia Huang. Finite-time cluster synchronization of coupled dynamical systems with impulsive effects. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3595-3620. doi: 10.3934/dcdsb.2020248 |
[6] |
Felix X.-F. Ye, Hong Qian. Stochastic dynamics Ⅱ: Finite random dynamical systems, linear representation, and entropy production. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 4341-4366. doi: 10.3934/dcdsb.2019122 |
[7] |
Roumen Anguelov, Jean M.-S. Lubuma, Meir Shillor. Dynamically consistent nonstandard finite difference schemes for continuous dynamical systems. Conference Publications, 2009, 2009 (Special) : 34-43. doi: 10.3934/proc.2009.2009.34 |
[8] |
Mahdi Khajeh Salehani. Identification of generic stable dynamical systems taking a nonlinear differential approach. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4541-4555. doi: 10.3934/dcdsb.2018175 |
[9] |
Laura Gardini, Iryna Sushko. Preface: Special issue on nonlinear dynamical systems in economic modeling. Discrete and Continuous Dynamical Systems - B, 2021, 26 (11) : i-iv. doi: 10.3934/dcdsb.2021241 |
[10] |
Thomas Westerbäck. Parity check systems of nonlinear codes over finite commutative Frobenius rings. Advances in Mathematics of Communications, 2017, 11 (3) : 409-427. doi: 10.3934/amc.2017035 |
[11] |
Mingyou Zhang, Qingsong Zhao, Yu Liu, Wenke Li. Finite time blow-up and global existence of solutions for semilinear parabolic equations with nonlinear dynamical boundary condition. Electronic Research Archive, 2020, 28 (1) : 369-381. doi: 10.3934/era.2020021 |
[12] |
Xuemei Li, Zaijiu Shang. On the existence of invariant tori in non-conservative dynamical systems with degeneracy and finite differentiability. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 4225-4257. doi: 10.3934/dcds.2019171 |
[13] |
Ian Melbourne, Dalia Terhesiu. Mixing properties for toral extensions of slowly mixing dynamical systems with finite and infinite measure. Journal of Modern Dynamics, 2018, 12: 285-313. doi: 10.3934/jmd.2018011 |
[14] |
Ahmed Bonfoh, Ibrahim A. Suleman. Robust exponential attractors for singularly perturbed conserved phase-field systems with no growth assumption on the nonlinear term. Communications on Pure and Applied Analysis, 2021, 20 (10) : 3655-3682. doi: 10.3934/cpaa.2021125 |
[15] |
Grégory Berhuy, Jean Fasel, Odile Garotta. Rank weights for arbitrary finite field extensions. Advances in Mathematics of Communications, 2021, 15 (4) : 575-587. doi: 10.3934/amc.2020083 |
[16] |
Caixia Gao, Enmin Feng, Zongtao Wang, Zhilong Xiu. Nonlinear dynamical systems of bio-dissimilation of glycerol to 1,3-propanediol and their optimal controls. Journal of Industrial and Management Optimization, 2005, 1 (3) : 377-388. doi: 10.3934/jimo.2005.1.377 |
[17] |
Masatoshi Shiino, Keiji Okumura. Control of attractors in nonlinear dynamical systems using external noise: Effects of noise on synchronization phenomena. Conference Publications, 2013, 2013 (special) : 685-694. doi: 10.3934/proc.2013.2013.685 |
[18] |
Abderrahim Azouani, Edriss S. Titi. Feedback control of nonlinear dissipative systems by finite determining parameters - A reaction-diffusion paradigm. Evolution Equations and Control Theory, 2014, 3 (4) : 579-594. doi: 10.3934/eect.2014.3.579 |
[19] |
Ta T.H. Trang, Vu N. Phat, Adly Samir. Finite-time stabilization and $H_\infty$ control of nonlinear delay systems via output feedback. Journal of Industrial and Management Optimization, 2016, 12 (1) : 303-315. doi: 10.3934/jimo.2016.12.303 |
[20] |
Evelyn Lunasin, Edriss S. Titi. Finite determining parameters feedback control for distributed nonlinear dissipative systems -a computational study. Evolution Equations and Control Theory, 2017, 6 (4) : 535-557. doi: 10.3934/eect.2017027 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]