2005, 2005(Special): 634-641. doi: 10.3934/proc.2005.2005.634

Exponential attractors for 2d magneto-micropolor fluid flow in bounded domain

1. 

Advanced Research Institute for Science and Engineering, Waseda University, Tokyo, 169-8555, Japan

Received  October 2004 Revised  March 2005 Published  September 2005

We show the existence of an exponential attractor for the dynamical system associated with the equations of the system of the 2D magneto-micropolar fluid flow in a bounded domain. The construction of an exponential attractor relies on the abstract theory given in [2].
Citation: Kei Matsuura. Exponential attractors for 2d magneto-micropolor fluid flow in bounded domain. Conference Publications, 2005, 2005 (Special) : 634-641. doi: 10.3934/proc.2005.2005.634
[1]

Hiroshi Inoue, Kei Matsuura, Mitsuharu Ôtani. Strong solutions of magneto-micropolar fluid equation. Conference Publications, 2003, 2003 (Special) : 439-448. doi: 10.3934/proc.2003.2003.439

[2]

Xin Zhong. Global well-posedness and exponential decay for 3D nonhomogeneous magneto-micropolar fluid equations with vacuum. Communications on Pure & Applied Analysis, 2022, 21 (2) : 493-515. doi: 10.3934/cpaa.2021185

[3]

Kazuo Yamazaki. Large deviation principle for the micropolar, magneto-micropolar fluid systems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 913-938. doi: 10.3934/dcdsb.2018048

[4]

Cung The Anh, Vu Manh Toi. Local exact controllability to trajectories of the magneto-micropolar fluid equations. Evolution Equations & Control Theory, 2017, 6 (3) : 357-379. doi: 10.3934/eect.2017019

[5]

Xin Zhong. Singularity formation to the nonhomogeneous magneto-micropolar fluid equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (12) : 6339-6357. doi: 10.3934/dcdsb.2021021

[6]

Kazuo Yamazaki. Global regularity of the two-dimensional magneto-micropolar fluid system with zero angular viscosity. Discrete & Continuous Dynamical Systems, 2015, 35 (5) : 2193-2207. doi: 10.3934/dcds.2015.35.2193

[7]

Jinbo Geng, Xiaochun Chen, Sadek Gala. On regularity criteria for the 3D magneto-micropolar fluid equations in the critical Morrey-Campanato space. Communications on Pure & Applied Analysis, 2011, 10 (2) : 583-592. doi: 10.3934/cpaa.2011.10.583

[8]

Jens Lorenz, Wilberclay G. Melo, Suelen C. P. de Souza. Regularity criteria for weak solutions of the Magneto-micropolar equations. Electronic Research Archive, 2021, 29 (1) : 1625-1639. doi: 10.3934/era.2020083

[9]

Tong Tang, Jianzhu Sun. Local well-posedness for the density-dependent incompressible magneto-micropolar system with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (12) : 6017-6026. doi: 10.3934/dcdsb.2020377

[10]

Zhi-Ying Sun, Lan Huang, Xin-Guang Yang. Exponential stability and regularity of compressible viscous micropolar fluid with cylinder symmetry. Electronic Research Archive, 2020, 28 (2) : 861-878. doi: 10.3934/era.2020045

[11]

Haibo Cui, Junpei Gao, Lei Yao. Asymptotic behavior of the one-dimensional compressible micropolar fluid model. Electronic Research Archive, 2021, 29 (2) : 2063-2075. doi: 10.3934/era.2020105

[12]

Haibo Cui, Haiyan Yin. Stability of the composite wave for the inflow problem on the micropolar fluid model. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1265-1292. doi: 10.3934/cpaa.2017062

[13]

Xuhui Peng, Jianhua Huang, Yan Zheng. Exponential mixing for the fractional Magneto-Hydrodynamic equations with degenerate stochastic forcing. Communications on Pure & Applied Analysis, 2020, 19 (9) : 4479-4506. doi: 10.3934/cpaa.2020204

[14]

I. D. Chueshov, Iryna Ryzhkova. A global attractor for a fluid--plate interaction model. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1635-1656. doi: 10.3934/cpaa.2013.12.1635

[15]

Dalibor Pražák. Exponential attractor for the delayed logistic equation with a nonlinear diffusion. Conference Publications, 2003, 2003 (Special) : 717-726. doi: 10.3934/proc.2003.2003.717

[16]

Messoud Efendiev, Anna Zhigun. On an exponential attractor for a class of PDEs with degenerate diffusion and chemotaxis. Discrete & Continuous Dynamical Systems, 2018, 38 (2) : 651-673. doi: 10.3934/dcds.2018028

[17]

Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2899-2920. doi: 10.3934/dcdsb.2020210

[18]

Wenlong Sun, Jiaqi Cheng, Xiaoying Han. Random attractors for 2D stochastic micropolar fluid flows on unbounded domains. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 693-716. doi: 10.3934/dcdsb.2020189

[19]

Baoquan Yuan, Xiao Li. Blow-up criteria of smooth solutions to the three-dimensional micropolar fluid equations in Besov space. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2167-2179. doi: 10.3934/dcdss.2016090

[20]

Xin Zhong. A blow-up criterion of strong solutions to two-dimensional nonhomogeneous micropolar fluid equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2020, 25 (12) : 4603-4615. doi: 10.3934/dcdsb.2020115

 Impact Factor: 

Metrics

  • PDF downloads (45)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]